Detection of Sunn Pests Using Sound Signal Processing Methods
dc.authorid | 0000-0002-2954-9430 | |
dc.authorid | 0000-0002-5145-5991 | |
dc.authorscopusid | 57191838579 | |
dc.authorscopusid | 56780324000 | |
dc.authorscopusid | 56631551100 | |
dc.authorwosid | Kırcı, Murvet/AAD-5676-2021 | |
dc.authorwosid | Kıvan, Müjgan/C-3427-2018 | |
dc.contributor.author | Yazgaç, Bilgi Görkem | |
dc.contributor.author | Kırcı, Mürvet | |
dc.contributor.author | Kıvan, Müjgan | |
dc.date.accessioned | 2022-05-11T14:43:31Z | |
dc.date.available | 2022-05-11T14:43:31Z | |
dc.date.issued | 2016 | |
dc.department | Fakülteler, Ziraat Fakültesi, Bitki Koruma Bölümü | |
dc.description | 5th International Conference on Agro-Geoinformatics (Agro-Geoinformatics) -- JUL 18-20, 2016 -- Inst Agr Resources & Regional Planning, Chinese Acad Agr Sci, Tianjin, PEOPLES R CHINA | |
dc.description.abstract | Extensive consumption of cereals as food in different domestic cousins places great demand the detection of cereal pest and struggle against them. Sunn pests such as Eurygaster integriceps, Eurygaster austriaca, Aelia rostrata and Aelia acuminata are insects with similar seasonal behaviors and dominant threat to the cereal plantations of Turkey. In this work, a microphone which works in acoustic and ultrasonic sound levels with the ability of making recordings with high frequency rate is used. Following the recording of sunn pest sounds with laboratory and outdoor conditions, the sound feature vectors are obtained with the application of different methods such as Linear Predictive Cepstral Coefficients (LPCC), Line Spectral Frequencies (LSF) and Mel Frequency Cepstral Coefficients (MFCC). By analyzing different kNN models it is shown that the automatic detection of sunn pests is possible with sound processing and machine learning methods. The best results is achieved with the overall accuracy of 93.6% using the combination of MFCC and LSF methods. | |
dc.description.sponsorship | Tianjin Polytechn Univ, George Mason Univ, Ctr Spatial Informat Sci & Syst, CSISS Fdn Inc, Open Geospatial Consortium, Turkish Minist Agr, TARBIL Agr Informat Appl Res Ctr, Istanbul Tech Univ, Chinese Acad Agr Sci, Chinese Soc Agr Resources & Regional Planning, Chinese Assoc Agr Sci Soc, Wuhan Univ, IEEE Geoscience & Remote Sensing Soc, State Adm Foreign Experts Affairs China, Minist Agr, Natl Nat Sci Fdn China | |
dc.identifier.endpage | 459 | |
dc.identifier.issn | 2334-3168 | |
dc.identifier.scopus | 2-s2.0-84994137820 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 454 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/9633 | |
dc.identifier.wos | WOS:000391252300090 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Kıvan, Müjgan | |
dc.language.iso | en | |
dc.publisher | IEEE | |
dc.relation.ispartof | 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics) | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Cereals | |
dc.subject | sunn pests | |
dc.subject | sound processing | |
dc.subject | signal processing | |
dc.subject | feature extraction | |
dc.subject | LPCC | |
dc.subject | LSF | |
dc.subject | MFCC | |
dc.subject | machine learning | |
dc.subject | kNN | |
dc.subject | Insect | |
dc.subject | Classification | |
dc.subject | Wheat | |
dc.title | Detection of Sunn Pests Using Sound Signal Processing Methods | |
dc.type | Conference Object |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 9633.pdf
- Boyut:
- 388.45 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text