Some compactness properties of L-weakly and M-weakly compact operators
dc.authorscopusid | 41761113600 | |
dc.authorscopusid | 6503869846 | |
dc.authorwosid | Bayram, Erdal/ABA-6029-2020 | |
dc.contributor.author | Bayram, Erdal | |
dc.contributor.author | Tonyali, C. | |
dc.date.accessioned | 2022-05-11T14:31:11Z | |
dc.date.available | 2022-05-11T14:31:11Z | |
dc.date.issued | 2012 | |
dc.department | Fakülteler, Fen Edebiyat Fakültesi, Matematik Bölümü | |
dc.description.abstract | We present some compactness properties of L-weakly and M-weakly compact operators on a Banach lattice under additional conditions. Thus, we can say that every bounded operator which commutes with any L-weakly or M-weakly compact operator have a non-trivial closed invariant subspace. | |
dc.identifier.doi | 10.1007/s10474-011-0160-9 | |
dc.identifier.endpage | 7 | |
dc.identifier.issn | 0236-5294 | |
dc.identifier.issue | 45323 | en_US |
dc.identifier.scopus | 2-s2.0-84858703924 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://doi.org/10.1007/s10474-011-0160-9 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/7352 | |
dc.identifier.volume | 135 | |
dc.identifier.wos | WOS:000301787700001 | |
dc.identifier.wosquality | Q4 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Bayram, Erdal | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.relation.ispartof | Acta Mathematica Hungarica | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | L-weakly compact operator | |
dc.subject | M-weakly compact operator | |
dc.subject | Discrete spaces | |
dc.title | Some compactness properties of L-weakly and M-weakly compact operators | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 7352.pdf
- Boyut:
- 441.79 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text