Promising room temperature thermoelectric conversion efficiency of zinc-blende AgI from first principles

dc.authorscopusid57201860999
dc.authorscopusid57219476699
dc.authorscopusid57219475677
dc.authorscopusid56017477600
dc.authorscopusid11738777600
dc.contributor.authorBulut, Pınar
dc.contributor.authorBeceren, B.
dc.contributor.authorYıldırım, S.
dc.contributor.authorSevik, C.
dc.contributor.authorGürel, Tanju
dc.date.accessioned2022-05-11T14:03:18Z
dc.date.available2022-05-11T14:03:18Z
dc.date.issued2020
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Fizik Bölümü
dc.description.abstractThe theoretical investigation on structural, vibrational, and electronic properties of zinc-blende (ZB) AgI were carried out employing first principles density functional theory calculations. Thermoelectric properties then were predicted through semi-classical Boltzmann transport equations within the constant relaxation time approximation. Equilibrium lattice parameter, bulk modulus, elastic constants, and vibrational properties were calculated by using generalized gradient approximation. Calculated properties are in good agreement with available experimental values. Electronic and thermoelectric properties were investigated both with and without considering spin-orbit coupling (SOC) effect which is found to have a strong influence on p-type Seebeck coefficient as well as the power factor of the ZB-AgI. By inclusion of SOC, a reduction of the band-gap and p-type Seebeck coefficients as well as the power factor was found which is the indication of that spin-orbit interaction cannot be ignored for p-type thermoelectric properties of the ZB-AgI. By using deformation potential theory for electronic relaxation time and experimentally predicted lattice thermal conductivity, we obtained a ZT value 1.69 (0.89) at 400 K for n-type (p-type) carrier concentration of 1.5 × 1018 (4.6 ×1019) cm-3 that makes ZB-AgI as a promising room temperature thermoelectric material. © 2020 IOP Publishing Ltd.
dc.description.sponsorshipESTU-BAP 19ADP080
dc.description.sponsorshipC S acknowledges the support from the Eskisehir Technical University (ESTU-BAP 19ADP080).
dc.identifier.doi10.1088/1361-648X/abb867
dc.identifier.issn0953-8984
dc.identifier.issue1en_US
dc.identifier.pmid32927438
dc.identifier.scopus2-s2.0-85092944593
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1088/1361-648X/abb867
dc.identifier.urihttps://hdl.handle.net/20.500.11776/4664
dc.identifier.volume33
dc.identifier.wosWOS:000577217600001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.institutionauthorBulut, Pınar
dc.institutionauthorBeceren, B.
dc.institutionauthorYıldırım, S.
dc.institutionauthorGürel, Tanju
dc.language.isoen
dc.publisherIOP Publishing Ltd
dc.relation.ispartofJournal of Physics Condensed Matter
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectdensity functional theory
dc.subjecthalide semiconductors
dc.subjectSeebeck coefficient
dc.subjectsemi-classical Boltzmann transport equation
dc.subjectthermoelectrics
dc.subjectCalculations
dc.subjectCarrier concentration
dc.subjectDensity functional theory
dc.subjectElectric power factor
dc.subjectElectronic properties
dc.subjectEnergy gap
dc.subjectEquilibrium constants
dc.subjectLattice constants
dc.subjectLattice theory
dc.subjectRelaxation time
dc.subjectSeebeck coefficient
dc.subjectSilver halides
dc.subjectSpin orbit coupling
dc.subjectThermal conductivity
dc.subjectThermoelectric equipment
dc.subjectZinc
dc.subjectZinc sulfide
dc.subjectBoltzmann transport equation
dc.subjectDeformation potential theory
dc.subjectFirst-principles density functional theory
dc.subjectGeneralized gradient approximations
dc.subjectLattice thermal conductivity
dc.subjectRelaxation time approximation
dc.subjectTheoretical investigations
dc.subjectThermoelectric conversion efficiency
dc.subjectThermoelectricity
dc.titlePromising room temperature thermoelectric conversion efficiency of zinc-blende AgI from first principles
dc.typeArticle

Dosyalar