Convex and Starlike Functions Defined on the Subclass of the Class of the Univalent Functions S with Order 2(- r)
dc.contributor.author | Yıldız, İsmet | |
dc.contributor.author | Mert, Oya | |
dc.contributor.author | Akyar, Alaattin | |
dc.date.accessioned | 2023-05-06T17:20:50Z | |
dc.date.available | 2023-05-06T17:20:50Z | |
dc.date.issued | 2022 | |
dc.department | Fakülteler, Fen Edebiyat Fakültesi, Matematik Bölümü | |
dc.description.abstract | In this paper, some conditions have been improved so that the function g(z) is defined as g(z) = 1+ Sigma(infinity)(k >= 2) alpha n+k(zn+k), which is analytic in unit disk U, can be in more specific subclasses of the S class, which is the most fundamental type of univalent function. It is analyzed some characteristics of starlike and convex functions of order 2(-r). | |
dc.identifier.doi | 10.22130/scma.2022.541789.1010 | |
dc.identifier.endpage | 116 | |
dc.identifier.issn | 2423-3900 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-85142850972 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 109 | |
dc.identifier.uri | https://doi.org/10.22130/scma.2022.541789.1010 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/11977 | |
dc.identifier.volume | 19 | |
dc.identifier.wos | WOS:000926122000008 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Mert, Oya | |
dc.language.iso | en | |
dc.publisher | Univ Maragheh | |
dc.relation.ispartof | Sahand Communications In Mathematical Analysis | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Analytic function | |
dc.subject | Convex function | |
dc.subject | Starlike function | |
dc.subject | Univalent function | |
dc.title | Convex and Starlike Functions Defined on the Subclass of the Class of the Univalent Functions S with Order 2(- r) | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 11977.pdf
- Boyut:
- 394.96 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text