Polynomial Affine Translation Surfaces in Euclidean 3-Space
dc.authorscopusid | 57203913242 | |
dc.authorscopusid | 7801537372 | |
dc.authorwosid | Ergüt, Mahmut/ABA-3553-2020 | |
dc.contributor.author | Bozok, Hülya Gün | |
dc.contributor.author | Ergüt, Mahmut | |
dc.date.accessioned | 2022-05-11T14:31:25Z | |
dc.date.available | 2022-05-11T14:31:25Z | |
dc.date.issued | 2019 | |
dc.department | Fakülteler, Fen Edebiyat Fakültesi, Matematik Bölümü | |
dc.description.abstract | In this paper we study the polynomial affine translation surfaces in E-3 with constant curvature. We derive some non-existence results for such surfaces. Several examples are also given by figures. | |
dc.identifier.doi | 10.5269/bspm.v37i3.32978 | |
dc.identifier.endpage | 202 | |
dc.identifier.issn | 0037-8712 | |
dc.identifier.issn | 2175-1188 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85053559699 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 195 | |
dc.identifier.uri | https://doi.org/10.5269/bspm.v37i3.32978 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/7443 | |
dc.identifier.volume | 37 | |
dc.identifier.wos | WOS:000461522900014 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Ergüt, Mahmut | |
dc.language.iso | en | |
dc.publisher | Soc Paranaense Matematica | |
dc.relation.ispartof | Boletim Sociedade Paranaense De Matematica | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Affine translation surface | |
dc.subject | polynomial translation surface | |
dc.subject | Gaussian curvature | |
dc.subject | mean curvature | |
dc.title | Polynomial Affine Translation Surfaces in Euclidean 3-Space | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 7443.pdf
- Boyut:
- 148.93 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text