The most stable transition state complexes of the aminotoluene molecule

Yükleniyor...
Küçük Resim

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Bulgarian Acad Science

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study the most probable reaction paths of ATnm, OATnm, MATnm, PATnm, NMATo and NMATm transition states with OH radicals have been analyzed. The optimized geometry was calculated via Gauss View 5. Subsequently, the lowest energy level was found by geometric optimization via the Gaussian 09 programme. The geometrical structure analysis and bond lengths were also calculated. This study aims to determine the most probable path for the product distribution of transition state complexes and OH radical interaction in the gas phase and aqueous media. Quantum mechanical methods were used to indicate the impact of the reaction rate over the primary intermediate, hydroxylated intermediate and finally the impact of water solvent. With the aim to determine the intermediates occurring at the reaction of transition state complexes degradation, the geometric optimization of the reactant and transition state complexes were realized through semiempirical AM1 and PM3, ab initio Hartree-Fock HF/3-21G, HF/6-31G* and Density Functional Theory (DFT) methods. Determining the most appropriate method and the reliability of the method are compared and evaluated theoretically. Based on the Quantum mechanical calculation, all the probable rate constants of reaction paths were calculated by using Transition State Theory (TST). In order to determine the transition state of the reaction, C-O bonds were taken as a reference. Activation energy for probable reaction paths of all transition state complexes, and their most stable state were calculated from the thermodynamic perspective for the gas phase and aqueous media. The impact of water solvent was investigated by using COSMO as the solvation model.

Açıklama

Anahtar Kelimeler

Aminotoluene, AM1, PM3, HF, TST, Hydroxyl Radicals, Toluene

Kaynak

Bulgarian Chemical Communications

WoS Q Değeri

Q4

Scopus Q Değeri

Cilt

48

Sayı

3

Künye