Bir Traktör Kabininde Ortam Şartlarının Yaz koşullarında HAD ile Belirlenmesi
Yükleniyor...
Tarih
2016
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Namık Kemal Üniversitesi, Ziraat Fakültesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu araştırmada, yaz koşullarında traktör kabini içinde sıcaklık ve hava hızı dağılımı, Hesaplamalı Akışkanlar Dinamiği (HAD) kullanılarak modellenmiş ve sensör ölçümleri ile karşılaştırılmıştır. Araştırmada materyal olarak kabinli bir traktör, Testo R1-177H1 sıcaklık ve bağıl nem sensörleri, Testo 435 hava hızı ölçüm sensörü kullanılmıştır. Ortam koşullarının dağılım modellerinin tahmini için Ansys Fluent programı kullanılmıştır. HAD modellemede oluşturulan ağ yapısında eleman sayısı 1074644'dür. Ağ tipleri prizmatik ve hegzagonaldir. Motor yüzeyi ve insan vücudundan ısı akısı vardır. Ayrıca, konveksiyon ve radyasyon ısı transferi olduğu HAD modelde kabul edilmiştir. Ölçümler maksimum dış ortam sıcaklığı 46.4°C alınarak ve kabin içinde sürücü varken laboratuvar koşullarında gerçekleştirilmiştir. Ölçülen ve modelden elde edilen sıcaklık ortalamaları sırasıyla 12.4°C ve 15.9°C'dir. Ölçüm ve model arasındaki ortalama fark 3.5°C'dir. Sıcaklık için HAD modelin ölçüm değerlerine yakınsaması %28.2 olmuştur. Hava hızı değerlerinde ise ölçülen ve modelden elde edilen ortalamalar sırasıyla 7.3 m/s ve 7.6 m/s olarak belirlenmiştir. Ölçüm ve model değerleri arasındaki ortalama fark ise 0.3 m/s olmuştur. Model tahmini %4.1 olarak bulunmuştur.
In this study, distributions of temperature and air velocity in a tractor cabin were modelled with Computational Fluid Dynamic (CFD) method and compared with measured data for summer conditions. A tractor with airconditioned cabin, Testo R1-177H1 temperature and relative humidity sensors, and Testo 435 air velocity sensor were used as material. Ansys Fluent software was used to estimate distribution models of ambient factors. Number of the elements of CFD model was 1074644 in mesh structure. Types of meshes were prismatic and hexagonal. There was heat flux from surface of engine and human body. In addition, convection and radiation heat transfer was assumed for modelling. Measurements were realised for 46.4°C outside temperature and driver was in tractor cabin in laboratory conditions. Average of temperature measurements and CFD Models estimations were 12.4°C and 15.9°C, respectively. Mean difference between measurements and CFD model estimations was 3.5°C. CFD Model accuracy for measurements of ambient temperature was 28.2%. Mean measured and estimated air velocities were calculated as 7.3 m/s and 7.6 m/s, respectively. Mean difference between measurements and model estimations was 0.3 m/s. Accuracy of the model estimation was for air velocity 4.1% .
In this study, distributions of temperature and air velocity in a tractor cabin were modelled with Computational Fluid Dynamic (CFD) method and compared with measured data for summer conditions. A tractor with airconditioned cabin, Testo R1-177H1 temperature and relative humidity sensors, and Testo 435 air velocity sensor were used as material. Ansys Fluent software was used to estimate distribution models of ambient factors. Number of the elements of CFD model was 1074644 in mesh structure. Types of meshes were prismatic and hexagonal. There was heat flux from surface of engine and human body. In addition, convection and radiation heat transfer was assumed for modelling. Measurements were realised for 46.4°C outside temperature and driver was in tractor cabin in laboratory conditions. Average of temperature measurements and CFD Models estimations were 12.4°C and 15.9°C, respectively. Mean difference between measurements and CFD model estimations was 3.5°C. CFD Model accuracy for measurements of ambient temperature was 28.2%. Mean measured and estimated air velocities were calculated as 7.3 m/s and 7.6 m/s, respectively. Mean difference between measurements and model estimations was 0.3 m/s. Accuracy of the model estimation was for air velocity 4.1% .
Açıklama
Anahtar Kelimeler
Sıcaklık, hava hızı, modelleme, kabin, Hesaplamalı Akışkanlar Dinamiği, temperature, air velocity, modelling, cabin, Computational Fluid Dynamics
Kaynak
Tekirdağ Ziraat Fakültesi Dergisi
WoS Q Değeri
N/A
Scopus Q Değeri
Cilt
13
Sayı
2