Positive Toeplitz operators from a harmonic Bergman-Besov space into another

Yükleniyor...
Küçük Resim

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Basel Ag

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

We define positive Toeplitz operators between harmonic Bergman-Besov spaces b(alpha)(p) on the unit ball of R-n for the full ranges of parameters 0 < p < infinity, alpha is an element of R. We give characterizations of bounded and compact Toeplitz operators taking one harmonic Bergman-Besov space into another in terms of Carleson and vanishing Carleson measures. We also give characterizations for a positive Toeplitz operator on b(alpha)(2) to be a Schatten class operator S-p in terms of averaging functions and Berezin transforms for 1 <= p < infinity, alpha is an element of R. Our results extend those known for harmonic weighted Bergman spaces.

Açıklama

Anahtar Kelimeler

Toeplitz Operator, Harmonic Bergman-Besov Space, Schatten Class, Carleson Measure, Berezin Transform, Bloch-Spaces, Unit Ball

Kaynak

Banach Journal of Mathematical Analysis

WoS Q Değeri

Q2

Scopus Q Değeri

Q2

Cilt

16

Sayı

4

Künye