Positive Toeplitz operators from a harmonic Bergman-Besov space into another
Yükleniyor...
Dosyalar
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Basel Ag
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
We define positive Toeplitz operators between harmonic Bergman-Besov spaces b(alpha)(p) on the unit ball of R-n for the full ranges of parameters 0 < p < infinity, alpha is an element of R. We give characterizations of bounded and compact Toeplitz operators taking one harmonic Bergman-Besov space into another in terms of Carleson and vanishing Carleson measures. We also give characterizations for a positive Toeplitz operator on b(alpha)(2) to be a Schatten class operator S-p in terms of averaging functions and Berezin transforms for 1 <= p < infinity, alpha is an element of R. Our results extend those known for harmonic weighted Bergman spaces.
Açıklama
Anahtar Kelimeler
Toeplitz Operator, Harmonic Bergman-Besov Space, Schatten Class, Carleson Measure, Berezin Transform, Bloch-Spaces, Unit Ball
Kaynak
Banach Journal of Mathematical Analysis
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
16
Sayı
4