Rings Whose Certain Modules are Dual Self-CS-Baer
dc.contributor.author | Eroğlu, Nuray | |
dc.date.accessioned | 2024-10-29T17:53:19Z | |
dc.date.available | 2024-10-29T17:53:19Z | |
dc.date.issued | 2024 | |
dc.department | Tekirdağ Namık Kemal Üniversitesi | |
dc.description.abstract | In this work, we characterize some rings in terms of dual self-CS-Baer modules (briefly, ds-CS-Baer modules). We prove that any ring $R$ is a left and right artinian serial ring with $J^2(R)=0$ iff $R\\oplus M$ is ds-CS-Baer for every right $R$-module $M$. If $R$ is a commutative ring, then we prove that $R$ is an artinian serial ring iff $R$ is perfect and every $R$-module is a direct sum of ds-CS-Baer $R$-modules. Also, we show that $R$ is a right perfect ring iff all countably generated free right $R$-modules are ds-CS-Baer. | |
dc.identifier.doi | 10.36753/mathenot.1461857 | |
dc.identifier.endpage | 118 | |
dc.identifier.issn | 2147-6268 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 113 | |
dc.identifier.trdizinid | 1266302 | |
dc.identifier.uri | https://doi.org/10.36753/mathenot.1461857 | |
dc.identifier.uri | https://search.trdizin.gov.tr/tr/yayin/detay/1266302 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/13507 | |
dc.identifier.volume | 12 | |
dc.indekslendigikaynak | TR-Dizin | |
dc.language.iso | en | |
dc.relation.ispartof | Mathematical Sciences and Applications E-Notes | |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Dual self-CS-Baer module | |
dc.subject | Harada ring | |
dc.subject | Lifting module | |
dc.subject | Perfect ring | |
dc.subject | QF-ring | |
dc.subject | Serial ring | |
dc.title | Rings Whose Certain Modules are Dual Self-CS-Baer | |
dc.type | Article |