Rings Whose Certain Modules are Dual Self-CS-Baer

dc.contributor.authorEroğlu, Nuray
dc.date.accessioned2024-10-29T17:53:19Z
dc.date.available2024-10-29T17:53:19Z
dc.date.issued2024
dc.departmentTekirdağ Namık Kemal Üniversitesi
dc.description.abstractIn this work, we characterize some rings in terms of dual self-CS-Baer modules (briefly, ds-CS-Baer modules). We prove that any ring $R$ is a left and right artinian serial ring with $J^2(R)=0$ iff $R\\oplus M$ is ds-CS-Baer for every right $R$-module $M$. If $R$ is a commutative ring, then we prove that $R$ is an artinian serial ring iff $R$ is perfect and every $R$-module is a direct sum of ds-CS-Baer $R$-modules. Also, we show that $R$ is a right perfect ring iff all countably generated free right $R$-modules are ds-CS-Baer.
dc.identifier.doi10.36753/mathenot.1461857
dc.identifier.endpage118
dc.identifier.issn2147-6268
dc.identifier.issue3en_US
dc.identifier.startpage113
dc.identifier.trdizinid1266302
dc.identifier.urihttps://doi.org/10.36753/mathenot.1461857
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1266302
dc.identifier.urihttps://hdl.handle.net/20.500.11776/13507
dc.identifier.volume12
dc.indekslendigikaynakTR-Dizin
dc.language.isoen
dc.relation.ispartofMathematical Sciences and Applications E-Notes
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDual self-CS-Baer module
dc.subjectHarada ring
dc.subjectLifting module
dc.subjectPerfect ring
dc.subjectQF-ring
dc.subjectSerial ring
dc.titleRings Whose Certain Modules are Dual Self-CS-Baer
dc.typeArticle

Dosyalar