Predicting CO and NOx emissions from gas turbines: novel data and a benchmark PEMS
dc.authorid | 0000-0003-4351-2244 | |
dc.authorid | 0000-0003-4842-2635 | |
dc.authorid | 0000-0001-7947-5508 | |
dc.authorscopusid | 36241785000 | |
dc.authorscopusid | 11539603200 | |
dc.authorscopusid | 54783608800 | |
dc.authorwosid | Uzun, Erdinç/AAG-5529-2019 | |
dc.authorwosid | Tufekci, Pinar/ABA-5121-2020 | |
dc.contributor.author | Kaya, Heysem | |
dc.contributor.author | Tüfekçi, Pınar | |
dc.contributor.author | Uzun, Erdinc | |
dc.date.accessioned | 2022-05-11T14:15:56Z | |
dc.date.available | 2022-05-11T14:15:56Z | |
dc.date.issued | 2019 | |
dc.department | Fakülteler, Çorlu Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.description.abstract | Predictive emission monitoring systems (PEMS) are important tools for validation and backing up of costly continuous emission monitoring systems used in gas-turbine-based power plants. Their implementation relies on the availability of appropriate and ecologically valid data. In this paper, we introduce a novel PEMS dataset collected over five years from a gas turbine for the predictive modeling of the CO and NOx emissions. We analyze the data using a recent machine learning paradigm, and present useful insights about emission predictions. Furthermore, we present a benchmark experimental procedure for comparability of future works on the data. | |
dc.identifier.doi | 10.3906/elk-1807-87 | |
dc.identifier.endpage | 4796 | |
dc.identifier.issn | 1300-0632 | |
dc.identifier.issn | 1303-6203 | |
dc.identifier.issue | 6 | en_US |
dc.identifier.scopus | 2-s2.0-85076639070 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 4783 | |
dc.identifier.uri | https://doi.org/10.3906/elk-1807-87 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/6124 | |
dc.identifier.volume | 27 | |
dc.identifier.wos | WOS:000506165400054 | |
dc.identifier.wosquality | Q4 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Kaya, Heysem | |
dc.institutionauthor | Tüfekçi, Pınar | |
dc.institutionauthor | Uzun, Erdinc | |
dc.language.iso | en | |
dc.publisher | Tubitak Scientific & Technical Research Council Turkey | |
dc.relation.ispartof | Turkish Journal of Electrical Engineering and Computer Sciences | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Predictive emission monitoring systems | |
dc.subject | CO | |
dc.subject | NOx | |
dc.subject | exhaust emission prediction | |
dc.subject | gas turbines | |
dc.subject | extreme learning machine | |
dc.subject | database | |
dc.subject | Extreme Learning-Machine | |
dc.subject | Model | |
dc.title | Predicting CO and NOx emissions from gas turbines: novel data and a benchmark PEMS | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 6124.pdf
- Boyut:
- 2.35 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text