A novel measure to analyze protein structures: Aspect ratio in protein alpha shapes
dc.authorscopusid | 8754351000 | |
dc.authorscopusid | 57224176922 | |
dc.authorscopusid | 23481439700 | |
dc.authorscopusid | 57224169998 | |
dc.contributor.author | Bağcı, Elife Zerrin | |
dc.contributor.author | Senguler-Ciftci, F. | |
dc.contributor.author | Çiftçi, Ünver | |
dc.contributor.author | Demir, A. | |
dc.date.accessioned | 2022-05-11T14:02:47Z | |
dc.date.available | 2022-05-11T14:02:47Z | |
dc.date.issued | 2021 | |
dc.department | Fakülteler, Fen Edebiyat Fakültesi, Biyoloji Bölümü | |
dc.department | Fakülteler, Fen Edebiyat Fakültesi, Matematik Bölümü | |
dc.description.abstract | Proteins' three-dimensional (3D) structures are analyzed traditionally using geometric descriptors such as torsional angles and inter-atomic distances. In this study a measure that is borrowed from computational geometry, aspect ratio of each tetrahedron in alpha shapes of proteins, is utilized. This geometric descriptor differentiates alpha and beta structural classes of proteins when combined with principal components analysis. The method converts the structures of individual proteins, 3D coordinates of the atoms, to points on a plane. It has a high degree of accuracy in differentiating R and T structures of hemoglobin. Therefore, it is anticipated that the geometric measure can be used successfully in a method that is extended to solve classification problems in machine learning. © 2021 Wiley Periodicals LLC. | |
dc.identifier.doi | 10.1002/prot.26148 | |
dc.identifier.endpage | 1276 | |
dc.identifier.issn | 0887-3585 | |
dc.identifier.issue | 10 | en_US |
dc.identifier.pmid | 33993533 | |
dc.identifier.scopus | 2-s2.0-85107157855 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1270 | |
dc.identifier.uri | https://doi.org/10.1002/prot.26148 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/4487 | |
dc.identifier.volume | 89 | |
dc.identifier.wos | WOS:000658040700001 | |
dc.identifier.wosquality | Q2 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.indekslendigikaynak | PubMed | |
dc.institutionauthor | Bağcı, Elife Zerrin | |
dc.institutionauthor | Çiftçi, Ünver | |
dc.language.iso | en | |
dc.publisher | John Wiley and Sons Inc | |
dc.relation.ispartof | Proteins: Structure, Function and Bioinformatics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | alpha shape | |
dc.subject | aspect ratio of tetrahedron | |
dc.subject | Delaunay triangulation | |
dc.subject | geometric descriptors | |
dc.subject | sphericity | |
dc.subject | protein | |
dc.subject | chemistry | |
dc.subject | molecular model | |
dc.subject | protein conformation | |
dc.subject | Models, Molecular | |
dc.subject | Protein Conformation | |
dc.subject | Proteins | |
dc.title | A novel measure to analyze protein structures: Aspect ratio in protein alpha shapes | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 4487.pdf
- Boyut:
- 1.78 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text