Microstructure and Oxidation Behavior of Atmospheric Plasma-Sprayed Thermal Barrier Coatings

Yükleniyor...
Küçük Resim

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Inc.

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Thermal barrier coatings (TBCs) are widely used as insulation layered at elevated temperatures in gas turbine components. Yttria-stabilized zirconia (YSZ) ceramic has outstanding properties such as phase stability at high temperature, a prolonged service lifetime, and low thermal conductivity, which make it a promising candidate. The high temperature of gas turbines leads to the transfer of oxygen from the top coat to the bond coat; therefore, oxidation occurs on the bond coat; it is called the thermally grown oxide layer and is mainly considered a failure mechanism of TBC systems. Gas turbine engines that have applications in energy production, transportation, and the defense industry depend on high-temperature TBCs for higher efficiency. During thermal cycling, mechanical forces can occur in turbine engines, oxidation, hot corrosion, the sintering of the top coat, and a thermal expansion coefficient mismatch between the metallic substrate and the ceramic top coat as a result of spallation or crack degradation. TBCs can be affected by coating materials, manufacturing processes, and their microstructure. Spallation of the ceramic top coat is a main problem for TBCs because it leads to oxidation, corrosion, and creeps in the TBC system. This chapter gives brief information about thermal barrier materials and the microstructure and oxidation behavior of TBCs. © 2018 Elsevier Inc. All rights reserved.

Açıklama

Anahtar Kelimeler

Failure mechanism, Gas turbine, Microstructure, Oxidation, Plasma spray coating, Thermal barrier coatings, YSZ

Kaynak

Exergetic, Energetic and Environmental Dimensions

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye