Evolutionary engineering and molecular characterization of a caffeine-resistant Saccharomyces cerevisiae strain

dc.authorid0000-0003-4221-3488
dc.authorid0000-0002-2278-3670
dc.authorid0000-0003-4883-4736
dc.authorid0000-0002-9645-6314
dc.authorscopusid55758999000
dc.authorscopusid57202097001
dc.authorscopusid57202090066
dc.authorscopusid57202090445
dc.authorscopusid35310754300
dc.authorscopusid6507072605
dc.authorwosidTopaloglu, Alican/Y-8652-2019
dc.authorwosidSURMELI, YUSUF/AAR-3671-2020
dc.authorwosidCakar, Z. Petek/A-6152-2019
dc.contributor.authorSürmeli, Yusuf
dc.contributor.authorHolyavkin, Can
dc.contributor.authorTopaloğlu, Alican
dc.contributor.authorArslan, Mevlüt
dc.contributor.authorKısakesen, Halil İbrahim
dc.contributor.authorÇakar, Zeynep Petek
dc.date.accessioned2022-05-11T14:45:28Z
dc.date.available2022-05-11T14:45:28Z
dc.date.issued2019
dc.departmentFakülteler, Ziraat Fakültesi, Tarımsal Biyoteknoloji Bölümü
dc.description.abstractCaffeine is a naturally occurring alkaloid, where its major consumption occurs with beverages such as coffee, soft drinks and tea. Despite a variety of reports on the effects of caffeine on diverse organisms including yeast, the complex molecular basis of caffeine resistance and response has yet to be understood. In this study, a caffeine-hyperresistant and genetically stable Saccharomyces cerevisiae mutant was obtained for the first time by evolutionary engineering, using batch selection in the presence of gradually increased caffeine stress levels and without any mutagenesis of the initial population prior to selection. The selected mutant could resist up to 50 mM caffeine, a level, to our knowledge, that has not been reported for S. cerevisiae so far. The mutant was also resistant to the cell wall-damaging agent lyticase, and it showed cross-resistance against various compounds such as rapamycin, antimycin, coniferyl aldehyde and cycloheximide. Comparative transcriptomic analysis results revealed that the genes involved in the energy conservation and production pathways, and pleiotropic drug resistance were overexpressed. Whole genome re-sequencing identified single nucleotide polymorphisms in only three genes of the caffeine-hyperresistant mutant; PDR1, PDR5 and RIM8, which may play a potential role in caffeine-hyperresistance. Graphic abstract
dc.identifier.doi10.1007/s11274-019-2762-2
dc.identifier.issn0959-3993
dc.identifier.issn1573-0972
dc.identifier.issue12en_US
dc.identifier.pmid31728740
dc.identifier.scopus2-s2.0-85075083203
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s11274-019-2762-2
dc.identifier.urihttps://hdl.handle.net/20.500.11776/10055
dc.identifier.volume35
dc.identifier.wosWOS:000497505000004
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.institutionauthorSürmeli, Yusuf
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofWorld Journal of Microbiology & Biotechnology
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAdaptive laboratory evolution
dc.subjectCaffeine
dc.subjectEvolutionary engineering
dc.subjectPleiotropic drug resistance (PDR)
dc.subjectSaccharomyces cerevisiae
dc.subjectStress resistance
dc.subjectMultidrug Transporter Pdr5
dc.subjectCell-Wall Composition
dc.subjectEthanol-Tolerance
dc.subjectRim101 Pathway
dc.subjectGrowth
dc.subjectTranscription
dc.subjectProtein
dc.subjectGene
dc.subjectTor
dc.subjectMetabolism
dc.titleEvolutionary engineering and molecular characterization of a caffeine-resistant Saccharomyces cerevisiae strain
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10055.pdf
Size:
2.36 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text