Multiple small solutions for p(x)-Schrodinger equations with local sublinear nonlinearities via genus theory
Yükleniyor...
Dosyalar
Tarih
2017
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Univ Szeged, Bolyai Institute
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this paper, we deal with the following p(x) - Schrodinger problem: { (-div (vertical bar del u vertical bar(p(x)-2)del u) + V(x) vertical bar u vertical bar(p(x)-2) u = f (x, u) in R-N; u is an element of W-1,W-p(x) (R-N), where the nonlinearity is sublinear. We present the existence of infinitely many solutions for the problem. The main tool used here is a variational method and Krasnoselskii's genus theory combined with the theory of variable exponent Sobolev spaces. We also establish a Bartsch-Wang type compact embedding theorem for the variable exponent spaces.
Açıklama
Anahtar Kelimeler
p(x)-Laplace operator, Schrodinger equation, variable exponent Lebesgue-Sobolev spaces, Krasnoselskii's genus, P(X)-Laplacian Equations, Existence, Spaces
Kaynak
Electronic Journal of Qualitative Theory of Differential Equations
WoS Q Değeri
Q2
Scopus Q Değeri
Q3
Cilt
Sayı
75