Fotovoltaik Panellerde Güç Tahminlenmesi için Yapay Zekâ Yöntemlerinin Kullanılması

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Fosil kaynakların sınırlı rezervleri, fiyatlarındaki dalgalanmalar ve çevreye verdikleri zarar, ülkeleri birincil enerji kaynaklarına alternatif arayışlarına yöneltmiştir. Sınırsız ve çevre dostu bir kaynak olan güneş enerjisi, diğer enerji kaynaklarına göre güçlü bir alternatiftir. Avrupa Birliği ülkelerinin büyük çoğunluğu güneş enerjisinden elektrik üretiminde tüketicilere birçok teşvik mekanizması ile çeşitli fırsatlar sunmakta ve yaygın olarak kullanılmasını sağlamaktadır. Dünyanın pek çok yerinde; güneş, rüzgâr, hidrojen ve jeotermal gibi yenilenebilir enerji kaynaklarına olan ilgi de artmaktadır. Tüm bunların yanında, alternatif enerji kaynaklarının kullanılması ve enerji eldesinin daha verimli hale getirilmesi için araştırmalar devam etmektedir. Güneş enerjisinden elektrik eldesi için gerekli olan ışınım değeri, gün içindeki hava durumuna ve mevsim özelliklerine göre değişmektedir. Güneş enerjisi santrallerinin kurulduğu bölgedeki iklim koşulları, fotovoltaik panellerden elde edilecek çıkış gücünü ve enerji maliyetini doğrudan etkiler. Çevresel şartlara göre fotovoltaik panellerden üretilen çıkış gücünün tahminlenmesi, güneş enerji sistemlerinin kurulumunda şirketlere rehberlik etmesi, maksimum enerji eldesi, enerjinin yönetimi ve sistemin verimli çalıştırılabilmesi için büyük önem arz etmektedir. Bu çalışmada, kurulumu yapılan fotovoltaik panellerden elde edilen veriler (Sıcaklık, Nem, Basınç, Işınım) kullanılarak güç değerlerinin tahminlenmesi için ileri beslemeli geriye yayılımlı yapay sinir ağları ve KNN (K-Nearest Neighbors) yöntemleri kullanılmıştır. Böylece gerçek saha şartlarında elde edilen panel değerleri her iki yöntemle de eğitilerek sonuçları karşılaştırılmıştır. Sonuç olarak panelin güç değerleri en yüksek %98.7945 doğrulukla geliştirilen yapay sinir ağı modeli kullanılarak sınıflandırılmıştır. Bu çalışma kapsamında geliştirilen güneş enerjisi tahmini için kullanılan makine öğrenmesi modellerinin yüksek performansa sahip olduğu ve gerçek değerlere çok yakın sonuçlar üretebildiği görülmüştür. Ayrıca belirlenen yük talebine göre farklı özelliklere sahip lokasyonlarda geliştirilen her iki yapay zekâ modelinin de kullanılabileceği sonucuna varılmıştır.

Açıklama

Anahtar Kelimeler

Enerji, Güç, Verim, Yapay zeka, Fotovoltaik panel

Kaynak

Tekirdağ Ziraat Fakültesi Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

19

Sayı

2

Künye