Tepki Yüzeyi Tasarımı ve Yapay Sinir Ağları Yaklaşımı Uygulanarak Epoksi Matrisli Kompozit Malzemenin Aşınma Dayanımının Tahmini ve Modellenmesi

Loading...
Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Access Rights

info:eu-repo/semantics/openAccess

Abstract

Yapılan çalışmada; inşaat, otomotiv ve havacılık gibi birçok sektörde geniş bir kullanım alanına sahipolan epoksi matrisli kompozit malzemenin aşınma davranışına etki eden faktörler incelenmiş olup, süreçoptimizasyonu gerçekleştirilmiştir. Cam ve ferrokrom (karbür) katkı maddelerinin epoksi matrisli kompozitmalzemenin aşınma dayanımına etkisini tahmin etmek için, Merkezi Birleşik Tasarım (MBT) uygulanaraktoplam 18 deney noktasında 54 adet deney numunesi üretilmiştir. Üretilen numunelerin aşınma tepkideğerleri ölçülerek Tepki Yüzeyleri Tasarımı (TYT) ve Yapay Sinir Ağları (YSA) aşınma tahmin modellerioluşturulmuş ve bu modellerin tahmin performansı değerleri karşılaştırılmıştır. YSA yaklaşımının, sınamasetinin aşınma oranı tahmininde ortalama yüzde hata değeri (MAPE) %8,18 olarak hesaplanmış olup, TYTyaklaşımının MAPE değeri %9,42 olarak bulunmuştur. Tepki değişkenindeki değişkenliğin açıklanmasındave epoksi matrisli kompozit malzemenin aşınma davranışının tahmin edilmesinde R2 ve ortalama kare hata(MSE) istatistikleri de incelenmiş olup, bu istatistiklerde MSE için 1,317 ve R2için %81,1 değerleri ile TYTyaklaşımının YSA yaklaşımına göre daha başarılı olduğu sonucuna ulaşılmıştır. Ayrıca, cam katkı oranınınartması ile aşınma oranının büyük ölçüde azaldığı görülmüştür. Minimum aşınma oranı; küçükparçacıklarda cam ve ferrokrom katkı oranının sırasıyla %17,07 ve %2,93 olduğu, büyük parçacıklarda ikikatkı oranının da %17,07 olduğu durumda elde edilmiştir.
Epoxy resin is a widely used material in various of industries especially construction, aviation and automative. Factors that affect epoxy-based composite’s wear rate have been investigated and process optimization has been conducted in this paper. In order to predict the effect of glass and ferrochromium reinforcement in wear resistance of epoxy, total number of 54 sample has been produced where design points are determined by Central Composite Design (CCD). After samples have been tested via wear test machine, results are compared with Artificial Neural Network (ANN) and Response Surface Methodology (RSM) wear predictions. Mean absolute percentage error (MAPE) shows that ANN (8.18%) outperforms RSM (9.42%) in terms of wear prediction accuracy. Mean square error (MSE) and R 2 statistics are also examined in order to explain variability in response variable and it is concluded that RSM yields better results which are 1.317 and %81.1, respectively. Besides, it is found that glass reinforcement results in decrease in wear rate. Minimum wear rate for small sized particle is obtained at level where glass and ferrochromium reinforcement rates are 17.07% and 2.93%, respectively. For large sized particles, minimum wear rate is obtained where both reinforcements are at rate 17.07%.

Description

Keywords

Journal or Series

Uludağ Üniversitesi Mühendislik Fakültesi Dergisi

WoS Q Value

Scopus Q Value

Volume

25

Issue

3

Citation