Comparison of artificial intelligence methods for predicting compressive strength of concrete
dc.contributor.author | Cihan, Mehmet Timur | |
dc.date.accessioned | 2022-05-11T14:03:07Z | |
dc.date.available | 2022-05-11T14:03:07Z | |
dc.date.issued | 2021 | |
dc.department | Fakülteler, Çorlu Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü | |
dc.description.abstract | Compressive strength of concrete is an important parameter in concrete design. Accurate prediction of compressive strength of concrete can lower costs and save time. Therefore, thecompressive strength of concrete prediction performance of artificial intelligence methods (adaptive neuro fuzzy inference system, random forest, linear regression, classification and regression tree, support vector regression, k-nearest neighbour and extreme learning machine) are compared in this study using six different multinational datasets. The performance of these methods is evaluated using the correlation coefficient, root mean square error, mean absolute error, and mean absolute percentage error criteria. Comparative results show that the adaptive neuro fuzzy inference system (ANFIS) is more successful in all datasets. | |
dc.identifier.doi | 10.14256/JCE.3066.2020 | |
dc.identifier.endpage | 632 | |
dc.identifier.issn | 0350-2465 | |
dc.identifier.issn | 1333-9095 | |
dc.identifier.issue | 6 | en_US |
dc.identifier.scopus | 2-s2.0-85111693101 | |
dc.identifier.scopusquality | Q4 | |
dc.identifier.startpage | 617 | |
dc.identifier.uri | https://doi.org/10.14256/JCE.3066.2020 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/4612 | |
dc.identifier.volume | 73 | |
dc.identifier.wos | WOS:000674571200004 | |
dc.identifier.wosquality | Q4 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Cihan, Mehmet Timur | |
dc.language.iso | en | |
dc.publisher | Croatian Soc Civil Engineers-Hsgi | |
dc.relation.ispartof | Gradevinar | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | artificial intelligence | |
dc.subject | regression | |
dc.subject | ANFIS | |
dc.subject | concrete compressive strength | |
dc.subject | multinational data | |
dc.subject | Self-Compacting Concrete | |
dc.subject | Elastic-Modulus | |
dc.subject | Silica Fume | |
dc.subject | Fly-Ash | |
dc.subject | Performance | |
dc.subject | Optimization | |
dc.subject | Machine | |
dc.subject | System | |
dc.subject | Anfis | |
dc.subject | Model | |
dc.title | Comparison of artificial intelligence methods for predicting compressive strength of concrete | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 4612.pdf
- Boyut:
- 1.88 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text