Portfolio Optimization via a Surrogate Risk Measure: Conditional Desirability Value at Risk (CDVaR)
dc.authorid | 0000-0002-7085-0452 | |
dc.authorscopusid | 15836690800 | |
dc.contributor.author | Boduroğlu, İ. İlkay | |
dc.date.accessioned | 2022-05-11T14:15:56Z | |
dc.date.available | 2022-05-11T14:15:56Z | |
dc.date.issued | 2019 | |
dc.department | Fakülteler, Çorlu Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.description | 12th International Conference on Learning and Intelligent Optimization (LION) -- JUN 10-15, 2018 -- Kalamata, GREECE | |
dc.description.abstract | A risk measure that specifies minimum capital requirements is the amount of cash that must be added to a portfolio to make its risk acceptable to regulators. The 2008 financial crisis highlighted the demise of the most widely used risk measure, Value-at-Risk. Unlike the Conditional VaR model of Rockafellar & Uryasev, VaR ignores the possibility of abnormal returns and is not even a coherent risk measure as defined by Pflug. Both VaR and CVaR portfolio optimizers use asset-price return histories. Our novelty here is introducing an annual Desirability Value (DV) for a company and using the annual differences of DVs in CVaR optimization, instead of simply utilizing annual stock-price returns. The DV of a company is the perpendicular distance from the fundamental position of that company to the best separating hyperplane H-0 that separates profitable companies from losers during training. Thus, we introduce both a novel coherent surrogate risk measure, Conditional-Desirability-Value-at-Risk (CDVaR) and a direction along which to reduce (downside) surrogate risk, the perpendicular to H-0. Since it is a surrogate measure, CDVaR optimization does not produce a cash amount as the risk measure. However, the associated CVaR (or VaR) is trivially computable. Our machine-learning-fundamental-analysis-based CDVaR portfolio optimization results are comparable to those of mainstream price-returns-based CVaR optimizers. | |
dc.description.sponsorship | Univ Florida, Ctr Appl Optimizat, Wilfrid Laurier Univ, Comp Algebra Res Grp Lab, Inst Advancement Phys & Math | |
dc.identifier.doi | 10.1007/978-3-030-05348-2_23 | |
dc.identifier.endpage | 270 | |
dc.identifier.isbn | 978-3-030-05348-2 | |
dc.identifier.isbn | 978-3-030-05347-5 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.scopus | 2-s2.0-85059948504 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 257 | |
dc.identifier.uri | https://doi.org/10.1007/978-3-030-05348-2_23 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/6123 | |
dc.identifier.volume | 11353 | |
dc.identifier.wos | WOS:000611949200023 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Boduroğlu, İ. İlkay | |
dc.language.iso | en | |
dc.publisher | Springer International Publishing Ag | |
dc.relation.ispartof | Learning and Intelligent Optimization, Lion 12 | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Portfolio optimization | |
dc.subject | Machine learning | |
dc.subject | Risk management | |
dc.subject | Downside risk | |
dc.subject | Conditional value at risk | |
dc.subject | Linear programming | |
dc.subject | Fundamental analysis | |
dc.subject | International financial reporting standards | |
dc.subject | Model | |
dc.title | Portfolio Optimization via a Surrogate Risk Measure: Conditional Desirability Value at Risk (CDVaR) | |
dc.type | Conference Object |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 6023.pdf
- Boyut:
- 584.02 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text