Kernel ELM and CNN based Facial Age Estimation

dc.authorid0000-0001-6342-428X
dc.authorscopusid56565406500
dc.authorscopusid36241785000
dc.authorscopusid24724060000
dc.authorscopusid7006556254
dc.authorwosidSalah, Albert Ali/ABH-5561-2020
dc.authorwosidDibeklioglu, Hamdi/AAB-6907-2020
dc.contributor.authorGürpınar, Furkan
dc.contributor.authorKaya, Heysem
dc.contributor.authorDibeklioglu, Hamdi
dc.contributor.authorSalah, Albert Ali
dc.date.accessioned2022-05-11T14:15:49Z
dc.date.available2022-05-11T14:15:49Z
dc.date.issued2016
dc.departmentFakülteler, Çorlu Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
dc.description29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR) -- JUN 26-JUL 01, 2016 -- Las Vegas, NV
dc.description.abstracte propose a two-level system for apparent age estimation from facial images. Our system first classifies samples into overlapping age groups. Within each group, the apparent age is estimated with local regressors, whose outputs are then fused for the final estimate. We use a deformable parts model based face detector, and features from a pre-trained deep convolutional network. Kernel extreme learning machines are used for classification. We evaluate our system on the ChaLearn Looking at People 2016 - Apparent Age Estimation challenge dataset, and report 0.3740 normal score on the sequestered test set.
dc.description.sponsorshipIEEE, IEEE Comp Soc
dc.identifier.doi10.1109/CVPRW.2016.103
dc.identifier.endpage791
dc.identifier.isbn978-1-5090-1437-8
dc.identifier.issn2160-7508
dc.identifier.scopus2-s2.0-85010203580
dc.identifier.scopusqualityN/A
dc.identifier.startpage785
dc.identifier.urihttps://doi.org/10.1109/CVPRW.2016.103
dc.identifier.urihttps://hdl.handle.net/20.500.11776/6082
dc.identifier.wosWOS:000391572100096
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorKaya, Heysem
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartofProceedings of 29th Ieee Conference on Computer Vision and Pattern Recognition Workshops, (Cvprw 2016)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectRecognition
dc.subjectRegression
dc.titleKernel ELM and CNN based Facial Age Estimation
dc.typeConference Object

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
6082.pdf
Boyut:
456.31 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text