On solution of ordinary differential equations by using HWCM, ADM and RK4

dc.authoridBAKIR, Yasemin/0000-0001-8051-6012
dc.contributor.authorBakır, Yasemin
dc.contributor.authorMert, Oya
dc.date.accessioned2023-04-20T08:04:12Z
dc.date.available2023-04-20T08:04:12Z
dc.date.issued2022
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümü
dc.description.abstractThe Haar wavelet collocation approach (HWCM) is an impressive numerical method for solving linear initial value problems when compared to the existing numerical methods (Adomian decomposition method (ADM) & Runge-Kutta method (RK4)). The objective of this study is to use the Haar-wavelet technique, Adomian decomposition technique (ADM) and Runge-Kutta (RK4) method to achieve the numerical solution of second-order ordinary differential equations. The proposed methods are applied to three different problems and the numerical results show that the HWCM has better agreement with analytic solutions than the other numerical methods.
dc.identifier.doi10.1142/S0129183122501352
dc.identifier.issn0129-1831
dc.identifier.issn1793-6586
dc.identifier.issue10en_US
dc.identifier.urihttps://doi.org/10.1142/S0129183122501352
dc.identifier.urihttps://hdl.handle.net/20.500.11776/11009
dc.identifier.volume33
dc.identifier.wosWOS:000843535500005
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.institutionauthorMert, Oya
dc.language.isoen
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.ispartofInternational Journal of Modern Physics C
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectHaar Wavelet
dc.subjectAdomian Decomposition Method
dc.subjectRunge-Kutta Method
dc.subjectCollocation Point
dc.subjectHaar Wavelet Method
dc.subjectNumerical-Solution
dc.titleOn solution of ordinary differential equations by using HWCM, ADM and RK4
dc.typeArticle

Dosyalar