Analysis of Gait Dynamics of ALS Disease and Classification of Artificial Neural Networks
dc.authorid | 0000-0003-1860-7049 | |
dc.authorid | 0000-0002-4657-6617 | |
dc.authorid | 0000-0003-3486-2197 | |
dc.authorid | 0000-0001-8894-5794 | |
dc.authorscopusid | 17433273300 | |
dc.authorscopusid | 35617283100 | |
dc.authorscopusid | 57201280225 | |
dc.authorscopusid | 16229256000 | |
dc.authorwosid | Demir, Hasan/ABA-3698-2020 | |
dc.authorwosid | Akan, Aydin/P-3068-2019 | |
dc.authorwosid | AKGÜN, ÖMER/AAC-8894-2019 | |
dc.authorwosid | AKINCI, Tahir Cetin/AAB-3397-2021 | |
dc.contributor.author | Akgün, Ömer | |
dc.contributor.author | Akan, Aydın | |
dc.contributor.author | Demir, Hasan | |
dc.contributor.author | Akıncı, Tahir Çetin | |
dc.date.accessioned | 2022-05-11T14:17:40Z | |
dc.date.available | 2022-05-11T14:17:40Z | |
dc.date.issued | 2018 | |
dc.department | Fakülteler, Çorlu Mühendislik Fakültesi, Elektronik ve Haberleşme Mühendisliği Bölümü | |
dc.description.abstract | In this study, a gait device was used for gathering data.A group comprising control group and ALS patients was requested to walk using this device.Gait signals of the control group individuals and ALS patients taken from their left feet were recorded by means of the sensors sensitive to the force which was placed to the device. Spectral and statistical analyses of these signals were made.The results obtained from these analyses were used for making classification with Artificial Neural Network.In consequence of the classification, the individuals with ALS disease were diagnosed accurately with an average rate of 82 %.In the study, the signals taken from left foot of 14 normal individuals and 13 ALS patients were analyzed. | |
dc.identifier.doi | 10.17559/TV-20160914144554 | |
dc.identifier.endpage | 187 | |
dc.identifier.issn | 1330-3651 | |
dc.identifier.issn | 1848-6339 | |
dc.identifier.scopus | 2-s2.0-85047823645 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 183 | |
dc.identifier.uri | https://doi.org/10.17559/TV-20160914144554 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/6435 | |
dc.identifier.volume | 25 | |
dc.identifier.wos | WOS:000433290300026 | |
dc.identifier.wosquality | Q4 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Demir, Hasan | |
dc.language.iso | en | |
dc.publisher | Univ Osijek, Tech Fac | |
dc.relation.ispartof | Tehnicki Vjesnik-Technical Gazette | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | ALS Disease | |
dc.subject | Artificial Neural Nets | |
dc.subject | Gait Dynamics Analysis | |
dc.subject | Piezo Electric Sensors | |
dc.subject | Sound and Vibration | |
dc.subject | Amyotrophic-Lateral-Sclerosis | |
dc.subject | Perspective | |
dc.title | Analysis of Gait Dynamics of ALS Disease and Classification of Artificial Neural Networks | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 6435.pdf
- Boyut:
- 890.8 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text