Combining Deep Facial and Ambient Features for First Impression Estimation

dc.authorid0000-0001-6342-428X
dc.authorid0000-0001-6342-428X
dc.authorid0000-0001-7947-5508
dc.authorscopusid56565406500
dc.authorscopusid36241785000
dc.authorscopusid7006556254
dc.authorwosidSalah, Albert Ali/E-5820-2013
dc.authorwosidSalah, Albert Ali/ABH-5561-2020
dc.contributor.authorGürpınar, Furkan
dc.contributor.authorKaya, Heysem
dc.contributor.authorSalah, Albert Ali
dc.date.accessioned2022-05-11T14:15:48Z
dc.date.available2022-05-11T14:15:48Z
dc.date.issued2016
dc.departmentFakülteler, Çorlu Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
dc.description14th European Conference on Computer Vision (ECCV) -- OCT 08-16, 2016 -- Amsterdam, NETHERLANDS
dc.description.abstractFirst impressions influence the behavior of people towards a newly encountered person or a human-like agent. Apart from the physical characteristics of the encountered face, the emotional expressions displayed on it, as well as ambient information affect these impressions. In this work, we propose an approach to predict the first impressions people will have for a given video depicting a face within a context. We employ pre-trained Deep Convolutional Neural Networks to extract facial expressions, as well as ambient information. After video modeling, visual features that represent facial expression and scene are combined and fed to a Kernel Extreme Learning Machine regressor. The proposed system is evaluated on the ChaLearn Challenge Dataset on First Impression Recognition, where the classification target is the Big Five personality trait labels for each video. Our system achieved an accuracy of 90.94% on the sequestered test set, 0.36% points below the top system in the competition.
dc.identifier.doi10.1007/978-3-319-49409-8_30
dc.identifier.endpage385
dc.identifier.isbn978-3-319-49409-8
dc.identifier.isbn978-3-319-49408-1
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-85006027673
dc.identifier.scopusqualityQ3
dc.identifier.startpage372
dc.identifier.urihttps://doi.org/10.1007/978-3-319-49409-8_30
dc.identifier.urihttps://hdl.handle.net/20.500.11776/6080
dc.identifier.volume9915
dc.identifier.wosWOS:000389501100030
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorKaya, Heysem
dc.language.isoen
dc.publisherSpringer International Publishing Ag
dc.relation.ispartofComputer Vision - Eccv 2016 Workshops, Pt Iii
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPersonality traits
dc.subjectFirst impression
dc.subjectDeep learning
dc.subjectELM
dc.subjectFace
dc.subjectInferences
dc.subjectCompetence
dc.titleCombining Deep Facial and Ambient Features for First Impression Estimation
dc.typeConference Object

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
6080.pdf
Boyut:
1.94 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text