Combining Deep Facial and Ambient Features for First Impression Estimation
dc.authorid | 0000-0001-6342-428X | |
dc.authorid | 0000-0001-6342-428X | |
dc.authorid | 0000-0001-7947-5508 | |
dc.authorscopusid | 56565406500 | |
dc.authorscopusid | 36241785000 | |
dc.authorscopusid | 7006556254 | |
dc.authorwosid | Salah, Albert Ali/E-5820-2013 | |
dc.authorwosid | Salah, Albert Ali/ABH-5561-2020 | |
dc.contributor.author | Gürpınar, Furkan | |
dc.contributor.author | Kaya, Heysem | |
dc.contributor.author | Salah, Albert Ali | |
dc.date.accessioned | 2022-05-11T14:15:48Z | |
dc.date.available | 2022-05-11T14:15:48Z | |
dc.date.issued | 2016 | |
dc.department | Fakülteler, Çorlu Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.description | 14th European Conference on Computer Vision (ECCV) -- OCT 08-16, 2016 -- Amsterdam, NETHERLANDS | |
dc.description.abstract | First impressions influence the behavior of people towards a newly encountered person or a human-like agent. Apart from the physical characteristics of the encountered face, the emotional expressions displayed on it, as well as ambient information affect these impressions. In this work, we propose an approach to predict the first impressions people will have for a given video depicting a face within a context. We employ pre-trained Deep Convolutional Neural Networks to extract facial expressions, as well as ambient information. After video modeling, visual features that represent facial expression and scene are combined and fed to a Kernel Extreme Learning Machine regressor. The proposed system is evaluated on the ChaLearn Challenge Dataset on First Impression Recognition, where the classification target is the Big Five personality trait labels for each video. Our system achieved an accuracy of 90.94% on the sequestered test set, 0.36% points below the top system in the competition. | |
dc.identifier.doi | 10.1007/978-3-319-49409-8_30 | |
dc.identifier.endpage | 385 | |
dc.identifier.isbn | 978-3-319-49409-8 | |
dc.identifier.isbn | 978-3-319-49408-1 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.scopus | 2-s2.0-85006027673 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 372 | |
dc.identifier.uri | https://doi.org/10.1007/978-3-319-49409-8_30 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/6080 | |
dc.identifier.volume | 9915 | |
dc.identifier.wos | WOS:000389501100030 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Kaya, Heysem | |
dc.language.iso | en | |
dc.publisher | Springer International Publishing Ag | |
dc.relation.ispartof | Computer Vision - Eccv 2016 Workshops, Pt Iii | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Personality traits | |
dc.subject | First impression | |
dc.subject | Deep learning | |
dc.subject | ELM | |
dc.subject | Face | |
dc.subject | Inferences | |
dc.subject | Competence | |
dc.title | Combining Deep Facial and Ambient Features for First Impression Estimation | |
dc.type | Conference Object |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 6080.pdf
- Boyut:
- 1.94 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text