A Novel Voice Activity Detection for Multi-Channel Noise Reduction

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ieee-Inst Electrical Electronics Engineers Inc

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this study, a voice activity detection technique is designed using features such as short-term energy, periodicity and spectral flatness. The desired results are obtained by using these three features, even at low signal to noise ratio values. In addition, performance of multi-channel noise reduction algorithms such as Wiener speech distortion weighted, spatial prediction, minimum variance distortion-less response are compared using the proposed voice activity detection. Two different audio signals and three different noise types are used in the experiment. Noisy speech and only detection of noisy areas have been performed by proposed voice activity detection algorithm. The filter coefficients have been calculated for each filter algorithm used after detection of noisy speech and only noisy areas. The calculated filter coefficients have been multiplied by the frequency components of the signal received from the reference microphone to obtain an enhanced signal. Segmental signal to noise ratio, an objective method, and mean opinion score as a subjective method have been used to evaluate the performance of the filters. Speech distortion weighted Wiener filter has been found to be the best filter for noise reduction performance.

Açıklama

Anahtar Kelimeler

Adaptive filter, noise reduction, speech enhancement, voice activity detection, Speech Enhancement

Kaynak

Ieee Access

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

9

Sayı

Künye