Singular Minimal Surfaces which are Minimal
dc.contributor.author | Aydın, Muhittin Evren | |
dc.contributor.author | Erdur Kara, Ayla | |
dc.contributor.author | Ergüt, Mahmut | |
dc.date.accessioned | 2024-10-29T17:43:35Z | |
dc.date.available | 2024-10-29T17:43:35Z | |
dc.date.issued | 2021 | |
dc.department | Tekirdağ Namık Kemal Üniversitesi | |
dc.description.abstract | In the present paper, we discuss the singular minimal surfaces in Euclidean 3?space ?3 which are minimal. Such a surface is nothing but a plane, a trivial outcome. However, a non-trivial outcome is obtained when we modify the usual condition of singular minimality by using a special semi-symmetric metric connection instead of the Levi-Civita connection on ?3. With this new connection, we prove that, besides planes, the singular minimal surfaces which are minimal are the generalized cylinders, providing their explicit equations. A trivial outcome is observed when we use a special semi-symmetric non-metric connection. Furthermore, our discussion is adapted to the Lorentz-Minkowski 3-space. © 2021, Emrah Evren KARA. All rights reserved. | |
dc.identifier.doi | 10.32323/ujma.984462 | |
dc.identifier.endpage | 146 | |
dc.identifier.issn | 2619-9653 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-85175657327 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 136 | |
dc.identifier.uri | https://doi.org/10.32323/ujma.984462 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/12499 | |
dc.identifier.volume | 4 | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Emrah Evren KARA | |
dc.relation.ispartof | Universal Journal of Mathematics and Applications | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Minimal surface | |
dc.subject | Semi-symmetric connection | |
dc.subject | Singular minimal surface | |
dc.subject | Translation surface | |
dc.title | Singular Minimal Surfaces which are Minimal | |
dc.type | Article |