Multi-modal Score Fusion and Decision Trees for Explainable Automatic Job Candidate Screening from Video CVs
dc.authorid | 0000-0001-6342-428X | |
dc.authorid | 0000-0001-6342-428X | |
dc.authorid | 0000-0001-7947-5508 | |
dc.authorscopusid | 36241785000 | |
dc.authorscopusid | 56565406500 | |
dc.authorscopusid | 7006556254 | |
dc.authorwosid | Salah, Albert Ali/E-5820-2013 | |
dc.authorwosid | Salah, Albert Ali/ABH-5561-2020 | |
dc.contributor.author | Kaya, Heysem | |
dc.contributor.author | Gürpınar, Furkan | |
dc.contributor.author | Salah, Albert Ali | |
dc.date.accessioned | 2022-05-11T14:15:51Z | |
dc.date.available | 2022-05-11T14:15:51Z | |
dc.date.issued | 2017 | |
dc.department | Fakülteler, Çorlu Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.description | 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) -- JUL 21-26, 2017 -- Honolulu, HI | |
dc.description.abstract | We describe an end-to-end system for explainable automatic job candidate screening from video CVs. In this application, audio, face and scene features are first computed from an input video CV, using rich feature sets. These multiple modalities are fed into modality-specific regressors to predict apparent personality traits and a variable that predicts whether the subject will be invited to the interview. The base learners are stacked to an ensemble of decision trees to produce the outputs of the quantitative stage, and a single decision tree, combined with a rule-based algorithm produces interview decision explanations based on the quantitative results. The proposed system in this work ranks first in both quantitative and qualitative stages of the CVPR 2017 ChaLearn Job Candidate Screening Coopetition. | |
dc.description.sponsorship | IEEE, IEEE Comp Soc, CVF | |
dc.description.sponsorship | Bogazici UniversityBogazici University [BAP 16A01P4]; BAGEP Award of the Science Academy | |
dc.description.sponsorship | We thank the ChaLearn organization and other contributors of this challenge. This work is supported by Bogazici University Project BAP 16A01P4 and by the BAGEP Award of the Science Academy. | |
dc.identifier.doi | 10.1109/CVPRW.2017.210 | |
dc.identifier.endpage | 1659 | |
dc.identifier.isbn | 978-1-5386-0733-6 | |
dc.identifier.issn | 2160-7508 | |
dc.identifier.scopus | 2-s2.0-85030213298 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 1651 | |
dc.identifier.uri | https://doi.org/10.1109/CVPRW.2017.210 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/6098 | |
dc.identifier.wos | WOS:000426448300203 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Kaya, Heysem | |
dc.language.iso | en | |
dc.publisher | IEEE | |
dc.relation.ispartof | 2017 Ieee Conference on Computer Vision and Pattern Recognition Workshops (Cvprw) | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.title | Multi-modal Score Fusion and Decision Trees for Explainable Automatic Job Candidate Screening from Video CVs | |
dc.type | Conference Object |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 6098.pdf
- Boyut:
- 426.76 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text