Efficient and effective strategies for cross-corpus acoustic emotion recognition
dc.authorid | 0000-0003-3424-652X | |
dc.authorid | 0000-0001-7947-5508 | |
dc.authorscopusid | 36241785000 | |
dc.authorscopusid | 57219469958 | |
dc.authorwosid | Karpov, Alexey A/A-8905-2012 | |
dc.authorwosid | KAYA, Heysem/V-4493-2019 | |
dc.contributor.author | Kaya, Heysem | |
dc.contributor.author | Karpov, Alexey A. | |
dc.date.accessioned | 2022-05-11T14:15:53Z | |
dc.date.available | 2022-05-11T14:15:53Z | |
dc.date.issued | 2018 | |
dc.department | Fakülteler, Çorlu Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.description.abstract | An important research direction in speech technology is robust cross-corpus and cross-language emotion recognition. In this paper, we propose computationally efficient and performance effective feature normalization strategies for the challenging task of cross-corpus acoustic emotion recognition. We particularly deploy a cascaded normalization approach, combining linear speaker level, nonlinear value level and feature vector level normalization to minimize speaker-and corpus-related effects as well as to maximize class separability with linear kernel classifiers. We use extreme learning machine classifiers on five corpora representing five languages from different families, namely Danish, English, German, Russian and Turkish. Using a standard set of suprasegmental features, the proposed normalization strategies show superior performance compared to benchmark normalization approaches commonly used in the literature. (C) 2017 Elsevier B.V. All rights reserved. | |
dc.description.sponsorship | Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [16-37-60100]; Council for Grants of the President of Russia [MD-254.2017.8] | |
dc.description.sponsorship | This research is partially supported by the Russian Foundation for Basic Research (project No 16-37-60100) and by the Council for Grants of the President of Russia (project No MD-254.2017.8). | |
dc.identifier.doi | 10.1016/j.neucom.2017.09.049 | |
dc.identifier.endpage | 1034 | |
dc.identifier.issn | 0925-2312 | |
dc.identifier.issn | 1872-8286 | |
dc.identifier.scopus | 2-s2.0-85030651372 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1028 | |
dc.identifier.uri | https://doi.org/10.1016/j.neucom.2017.09.049 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/6106 | |
dc.identifier.volume | 275 | |
dc.identifier.wos | WOS:000418370200098 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Kaya, Heysem | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.ispartof | Neurocomputing | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Extreme learning machines | |
dc.subject | Acoustic emotion recognition | |
dc.subject | Cross-corpus adaptation | |
dc.subject | Extreme Learning-Machine | |
dc.subject | Physical Load | |
dc.subject | Challenge | |
dc.subject | Classification | |
dc.subject | Networks | |
dc.title | Efficient and effective strategies for cross-corpus acoustic emotion recognition | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 6106.pdf
- Boyut:
- 324.06 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text