Web content extraction by using decision tree learning

dc.authorscopusid54783608800
dc.authorscopusid55293388500
dc.authorscopusid16232085100
dc.contributor.authorUzun, Erdinç
dc.contributor.authorAgun, Hayri Volkan
dc.contributor.authorYerlikaya, Tarık
dc.date.accessioned2022-05-11T14:15:47Z
dc.date.available2022-05-11T14:15:47Z
dc.date.issued2012
dc.departmentFakülteler, Çorlu Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
dc.description2012 20th Signal Processing and Communications Applications Conference, SIU 2012 -- 18 April 2012 through 20 April 2012 -- Fethiye, Mugla -- 90786
dc.description.abstractVia information extraction techniques, web pages are able to generate datasets for various studies such as natural language processing, and data mining. However, nowadays the uninformative sections like advertisement, menus, and links are in increase. The cleaning of web pages from uninformative sections, and extraction of informative content has become an important issue. In this study, we present an decision tree learning approach over DOM based features which aims to clean the uninformative sections and extract informative content in three classes: title, main content, and additional information. Through this approach, differently from previous studies, the learning model for the extraction of the main content constructed on DIV and TD tags. The proposed method achieved 95.58% accuracy in cleaning uninformative sections and extraction of the informative content. Especially for the extraction of the main block, 0.96 f-measure is obtained. © 2012 IEEE.
dc.identifier.doi10.1109/SIU.2012.6204476
dc.identifier.isbn978-1467300568
dc.identifier.scopus2-s2.0-84863462457
dc.identifier.urihttps://doi.org/10.1109/SIU.2012.6204476
dc.identifier.urihttps://hdl.handle.net/20.500.11776/6068
dc.indekslendigikaynakScopus
dc.institutionauthorUzun, Erdinç
dc.language.isotr
dc.relation.ispartof2012 20th Signal Processing and Communications Applications Conference, SIU 2012, Proceedings
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectData sets
dc.subjectDecision tree learning
dc.subjectF-measure
dc.subjectInformation extraction techniques
dc.subjectLearning models
dc.subjectNAtural language processing
dc.subjectWeb content
dc.subjectComputational linguistics
dc.subjectData mining
dc.subjectDecision trees
dc.subjectNatural language processing systems
dc.subjectSignal processing
dc.subjectWebsites
dc.subjectInformation retrieval systems
dc.titleWeb content extraction by using decision tree learning
dc.title.alternativeKarar a?aci ö?renmesik? kullanarak web i?çeri?k çikarimi]
dc.typeConference Object

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
6068.pdf
Boyut:
446.24 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text