Robust Acoustic Emotion Recognition Based on Cascaded Normalization and Extreme Learning Machines
dc.authorid | 0000-0003-3424-652X | |
dc.authorid | 0000-0001-6342-428X | |
dc.authorid | 0000-0001-6342-428X | |
dc.authorid | 0000-0001-7947-5508 | |
dc.authorscopusid | 36241785000 | |
dc.authorscopusid | 57219469958 | |
dc.authorscopusid | 7006556254 | |
dc.authorwosid | Karpov, Alexey A/A-8905-2012 | |
dc.authorwosid | Salah, Albert Ali/E-5820-2013 | |
dc.authorwosid | Salah, Albert Ali/ABH-5561-2020 | |
dc.contributor.author | Kaya, Heysem | |
dc.contributor.author | Karpov, Alexey A. | |
dc.contributor.author | Salah, Albert Ali | |
dc.date.accessioned | 2022-05-11T14:15:49Z | |
dc.date.available | 2022-05-11T14:15:49Z | |
dc.date.issued | 2016 | |
dc.department | Fakülteler, Çorlu Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.description | 13th International Symposium on Neural Networks (ISNN) -- JUL 06-08, 2016 -- Saint Petersburg, RUSSIA | |
dc.description.abstract | One of the challenges in speech emotion recognition is robust and speaker-independent emotion recognition. In this paper, we take a cascaded normalization approach, combining linear speaker level, non-linear value level and feature vector level normalization to minimize speaker-related effects and to maximize class separability with linear kernel classifiers. We use extreme learning machine classifiers on a four class (i.e. joy, anger, sadness, neutral) problem. We show the efficacy of our proposed method on the recently collected Turkish Emotional Speech Database. | |
dc.description.sponsorship | City Univ Hong Kong, Russian Acad Sci, St Petersburg Inst Informat & Automat, IEEE Hong Kong Sect, CIS Chapter, Int Neural Network Soc, Asia Pacific Neural Network Soc, Russian Neural Networks Soc | |
dc.identifier.doi | 10.1007/978-3-319-40663-3_14 | |
dc.identifier.endpage | 123 | |
dc.identifier.isbn | 978-3-319-40663-3 | |
dc.identifier.isbn | 978-3-319-40662-6 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.scopus | 2-s2.0-84978818512 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 115 | |
dc.identifier.uri | https://doi.org/10.1007/978-3-319-40663-3_14 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/6086 | |
dc.identifier.volume | 9719 | |
dc.identifier.wos | WOS:000386324900014 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Kaya, Heysem | |
dc.language.iso | en | |
dc.publisher | Springer International Publishing Ag | |
dc.relation.ispartof | Advances in Neural Networks - Isnn 2016 | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Acoustic emotion recognition | |
dc.subject | Speech emotion recognition | |
dc.subject | Cascaded normalization | |
dc.subject | Extreme learning machines | |
dc.subject | ELM | |
dc.subject | Cognitive Load | |
dc.title | Robust Acoustic Emotion Recognition Based on Cascaded Normalization and Extreme Learning Machines | |
dc.type | Conference Object |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 6086.pdf
- Boyut:
- 769.71 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text