Generating function for extended Jacobi polynomials, noncommutative differential calculus and the relativistic energy and momentum operators

dc.authorscopusid6602808534
dc.contributor.authorMir-Kasimov, R. M.
dc.date.accessioned2022-05-11T14:48:03Z
dc.date.available2022-05-11T14:48:03Z
dc.date.issued2010
dc.departmentRektörlüğe Bağlı Bölümler, Rektörlük
dc.descriptionBogolyubov Conference on Modern Problems of Mathematical and Theoretical Physics -- SEP 15-18, 2009 -- Kyiv, UKRAINE
dc.description.abstractIt is shown that the generating function for the matrix elements of irreps of Lorentz group is the common eigenfunction of the interior derivatives of the noncommutative differential calculus over the commutative algebra generated by the coordinate functions. These derivatives commute and can be interpreted as the quantum mechanical operators of the relativistic momentum corresponding to the half of the non-Euclidean distance from the origin in the Lobachevsky momentum space.
dc.description.sponsorshipRussian Acad Sci
dc.identifier.doi10.1134/S1063779610060328
dc.identifier.endpage972
dc.identifier.issn1063-7796
dc.identifier.issn1531-8559
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-78649947551
dc.identifier.scopusqualityQ3
dc.identifier.startpage969
dc.identifier.urihttps://doi.org/10.1134/S1063779610060328
dc.identifier.urihttps://hdl.handle.net/20.500.11776/10592
dc.identifier.volume41
dc.identifier.wosWOS:000284777000032
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorMir-Kasimov, R. M.
dc.language.isoen
dc.publisherPleiades Publishing Inc
dc.relation.ispartofPhysics of Particles and Nuclei
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.titleGenerating function for extended Jacobi polynomials, noncommutative differential calculus and the relativistic energy and momentum operators
dc.typeConference Object

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
10592.pdf
Boyut:
190.47 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text