Interpretable radiomics method for predicting human papillomavirus status in oropharyngeal cancer using Bayesian networks
Küçük Resim Yok
Tarih
2023
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Sci Ltd
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Objectives: To develop a simple interpretable Bayesian Network (BN) to classify HPV status in patients with oropharyngeal cancer. Methods: Two hundred forty-six patients, 216 of whom were HPV positive, were used in this study. We extracted 851 radiomics markers from patients' contrast-enhanced Computed Tomography (CT) images. Mens eX Machina (MXM) approach selected two most relevant predictors: sphericity and max2DDiameterRow. The area under the curve (AUC) demonstrated BN model performance in 30% of the data reserved for testing. A Support Vector Machine (SVM) based method was also implemented for comparison purposes. Results: The Mens eX Machina (MXM) approach selected two most relevant predictors: sphericity and max2DDiameterRow. Areas under the Curves (AUC) were found 0.78 and 0.72 on the training and test data, respectively. When using support vector machine (SVM) and 25 features, the AUC was found 0.83 on the test data.Conclusions: The straightforward structure and power of interpretability of our BN model will help clinicians make treatment decisions and enable the non-invasive detection of HPV status from contrast-enhanced CT images. Higher accuracy can be obtained using more complex structures at the expense of lower interpretability. Advances in Knowledge: Radiomics is being studied lately as a simple imaging data based HPV status detection technique which can be an alternative to laboratory approaches. However, it generally lacks interpretability. This work demonstrated the feasibility of using Bayesian networks based radiomics for predicting HPV positivity in an interpretable way.
Açıklama
Anahtar Kelimeler
Bayesian Networks, HPV, Oropharyngeal Cancer
Kaynak
Physica Medica-European Journal of Medical Physics
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
114