Oak Leaf Classification: An Analysis of Features and Classifiers
Yükleniyor...
Dosyalar
Tarih
2019
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
IEEE
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Automatic classification of trees from leaves is a popular computer vision/machine learning task and has important applications in monitoring of forest wealth. While the final aim is preparing an application, which is capable of visual signal processing and classification, in this paper we present a new oak leaf dataset and preliminary results for classification of 8 types of oak trees. The novelties include comparative analysis of a small set of hand-crafted geometric features and popularly used high-dimensional appearance features, such as Local Binary Patterns (LBP) and Histograms of Oriented Gradients (HOG). We further compare commonly used Support Vector Machines (SVM) classifier with a recently popular, fast and robust learner called Extreme Learning Machines (ELM). Results indicate that a small set of geometric features reach an accuracy of 75%, while high dimensional appearance features can boost the performance up to92%.
Açıklama
International Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science (EBBT) -- APR 24-26, 2019 -- Istanbul Arel Univ, Kemal Gozukara Campus, Istanbul, TURKEY
Anahtar Kelimeler
Classificaiton, LBP, HOG, Extreme Learning Machines (ELM), Extreme Learning-Machine
Kaynak
2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (Ebbt)
WoS Q Değeri
N/A