Kimya endüstrisi atıksularının koagülasyon-flokülasyon ve potasyum persülfat oksidasyonu ile arıtımı
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Tekirdağ Namık Kemal Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu çalışmada, kimya endüstrisine ait bir tesisin kimyasal arıtma öncesinde yer alan dengeleme ünitesinden alınan atıksu numuneleri ile laboratuvar ölçekli çalışma yürütülmüştür. Yapılan çalışma sülfat radikallerinin oluşumu için termal/foto aktivasyon yöntemleri ve potasyum persülfat (K2S2O8) kullanımı incelenmiştir. Atıksu arıtımında koagülasyon-flokülasyon işlemleri sonrası potasyum persülfat kullanılarak termal ve foto-oksidasyonun etkinliği araştırılmıştır. Koagülasyon çalışmasında Alüminyum Sülfat ve Demir III Klorür için en uygun pH 7, Polialüminyum Klorür için pH 8 bulunmuş ve KOİ giderim verimlilikleri sırasıyla %14,9, %42,9 ve %38,7 olarak tespit edilmiştir. Optimum koagülant konsantrasyonu 1750 mg/L olarak belirlenmiş ve FeCl3 ile yapılan deneylerde en yüksek KOİ giderim verimi %52,8 olarak kaydedilmiştir. Koagülasyon ve flokülasyon işlemleri sonrasında elde edilen numuneler üzerinde yürütülen deneylerde, temas süresinin oksidasyon performansına etkisi değerlendirilmiş, belirlenen zaman aralıklarında alınan numunelerin KOİ ve TOK giderim verimleri analiz edilerek farklı reaksiyon koşullarının (sıcaklık, pH, persülfat dozu ve UV) oksidasyon verimliliği üzerindeki etkileri deneysel çalışmalarla görülmüştür. UV aktivasyonu ile yapılan deneylerde KOİ giderim verimleri termal oksidasyona göre daha düşük çıktığı gözlemlenmiştir. Sonuç olarak, bu çalışma kimya endüstrisine ait atık suyun ileri oksidasyon prosesleriyle arıtılabilirliğini göstermiş ve optimum reaksiyon koşullarını belirlemiştir.
In this study, a laboratory-scale study was conducted using wastewater samples collected from the equalization unit of a chemical industry plant prior to chemical treatment. Thermal/photo activation methods and the use of potassium persulfate (K2S2O8) to generate sulfate radicals were investigated. The effectiveness of thermal and photo oxidation using potassium persulfate after coagulation-flocculation processes in wastewater treatment was investigated. In the coagulation study, the optimum pH was found to be 7 for aluminum sulfate and ferric chloride, pH 8 for polyaluminum chloride, and the COD removal efficiencies were 14.9%, 42.9%, and 38.7%, respectively. The optimum coagulant concentration was determined to be 1750 mg/L and the highest COD removal efficiency was recorded as 52.8% in the experiments with FeCl3. In the experiments carried out on the samples obtained after the coagulation and flocculation processes, the effect of contact time on the oxidation performance was evaluated, the COD and TOC removal efficiencies of the samples taken at specified time intervals were analyzed, and the effects of different reaction conditions (temperature, pH, persulfate dose, and UV) on the oxidation efficiency were experimentally observed. It was observed that the COD removal efficiencies were lower in the UV activation experiments than in the thermal oxidation experiments. In conclusion, this study demonstrated the treatability of chemical industry wastewater by advanced oxidation processes and determined the optimal reaction conditions.
In this study, a laboratory-scale study was conducted using wastewater samples collected from the equalization unit of a chemical industry plant prior to chemical treatment. Thermal/photo activation methods and the use of potassium persulfate (K2S2O8) to generate sulfate radicals were investigated. The effectiveness of thermal and photo oxidation using potassium persulfate after coagulation-flocculation processes in wastewater treatment was investigated. In the coagulation study, the optimum pH was found to be 7 for aluminum sulfate and ferric chloride, pH 8 for polyaluminum chloride, and the COD removal efficiencies were 14.9%, 42.9%, and 38.7%, respectively. The optimum coagulant concentration was determined to be 1750 mg/L and the highest COD removal efficiency was recorded as 52.8% in the experiments with FeCl3. In the experiments carried out on the samples obtained after the coagulation and flocculation processes, the effect of contact time on the oxidation performance was evaluated, the COD and TOC removal efficiencies of the samples taken at specified time intervals were analyzed, and the effects of different reaction conditions (temperature, pH, persulfate dose, and UV) on the oxidation efficiency were experimentally observed. It was observed that the COD removal efficiencies were lower in the UV activation experiments than in the thermal oxidation experiments. In conclusion, this study demonstrated the treatability of chemical industry wastewater by advanced oxidation processes and determined the optimal reaction conditions.
Açıklama
Fen Bilimleri Enstitüsü, Çevre Mühendisliği Ana Bilim Dalı
Anahtar Kelimeler
Çevre Mühendisliği, Environmental Engineering