Prediction of Various Functional Finishing Treatments Using Artificial Neural Networks
dc.authorid | 0000-0002-2463-6885 | |
dc.authorid | 0000-0001-8141-5627 | |
dc.authorscopusid | 23489986400 | |
dc.authorscopusid | 24502872900 | |
dc.authorscopusid | 55102823400 | |
dc.authorwosid | Ünal, Pelin Gürkan/ABF-8759-2020 | |
dc.authorwosid | Dalbaşı, Eylen Sema/AAA-5102-2021 | |
dc.authorwosid | Unal, Pelin Gurkan/ABA-6570-2020 | |
dc.contributor.author | Namlıgöz, Eylen Sema | |
dc.contributor.author | Çoban, Süleyman | |
dc.contributor.author | Gürkan Ünal, Pelin | |
dc.date.accessioned | 2022-05-11T14:26:57Z | |
dc.date.available | 2022-05-11T14:26:57Z | |
dc.date.issued | 2011 | |
dc.department | Fakülteler, Çorlu Mühendislik Fakültesi, Tekstil Mühendisliği Bölümü | |
dc.description.abstract | In this study, in order to produce different water-oil repellent and wrinkle resistant fabrics, 21 different kinds of blended woven fabrics were treated (padded and transfered) with both classic and nano chemicals according to 4 different levels of concentrations. Afterwards, water, oil repellency and wrinkle angle recovery properties of the fabrics were measured. The purpose of this study is to predict these aforementioned functional properties of the fabrics before manufacturing based on the fabric blend, treatment method, used chemicals and chemical concentrations with the help of multi layer perceptron, one of the most popular network architecture. As a result of the study, it can be concluded that multi layer perceptron method can also be used for the classification problems successfully. | |
dc.identifier.doi | 10.1007/s12221-011-0414-8 | |
dc.identifier.endpage | 421 | |
dc.identifier.issn | 1229-9197 | |
dc.identifier.issn | 1875-0052 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-79958060663 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 414 | |
dc.identifier.uri | https://doi.org/10.1007/s12221-011-0414-8 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11776/6664 | |
dc.identifier.volume | 12 | |
dc.identifier.wos | WOS:000290739500019 | |
dc.identifier.wosquality | Q2 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Gürkan Ünal, Pelin | |
dc.language.iso | en | |
dc.publisher | Korean Fiber Soc | |
dc.relation.ispartof | Fibers and Polymers | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Finishing | |
dc.subject | Fabric | |
dc.subject | Classification | |
dc.subject | Multi layer perceptron | |
dc.subject | Linear-Regression Models | |
dc.subject | Spun Yarn Properties | |
dc.subject | Breaking Elongation | |
dc.subject | Strength | |
dc.subject | Fabrics | |
dc.title | Prediction of Various Functional Finishing Treatments Using Artificial Neural Networks | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 6664.pdf
- Boyut:
- 572.18 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text