Yazar "Sertkol, M." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Electrical and Dielectric Properties of Y3+-Substituted Barium Hexaferrites(Springer, 2017) Auwal, I. A.; Ünal, B.; Baykal, Abdulhadi; Kurtan, U.; Amir, M. D.; Yıldız, Aylin; Sertkol, M.In this study, Y3+ ion-substituted M-type barium hexaferrites (BaM; BaFe12O19) were fabricated via facile ceramic route. As-prepared powders were characterized by X-ray powder diffractometry (XRD), Fourier transform infrared (FT-IR) spectroscopy, and impedance spectroscopy. XRD (Rietveld) analyses confirmed the presence of a single characterization of all samples (except x = 0.0 and 0.1 samples). The crystallite sizes of products are found in the range of 47.2-63.2 nm. Spectral analysis (FT-IR) also presented the formation of spinel structure for all products. The ac conductivity of the substituted samples was found to initially decrease slightly with increase in Y3+ compared with unsubstituted, and then variation tendency changes at the medium substitution ranges are observed with a different attitude against temperature. In the end, the lower conductivity for high substitutions is recorded and increases as functions of frequency while it also increases with the elevation of temperature. It was observed that ac conductivities of products increased by increasing frequency which indicate that observed ac conductivity is due to both electronic and polaron hopping mechanism.Öğe The Effect of Cr3+ Substitution on Magnetic Properties of CoFe2O4 Nanoparticles Synthesized by Microwave Combustion Route(Springer, 2016) Baykal, Abdulhadi; Eryigit, S.; Sertkol, M.; Ünlü, S.; Yıldız, Aylin; Shirsath, Sagar E.CoCr (x) Fe2-x O-4 (0.0 aecurrency sign x aecurrency sign 1.0) nanoparticles were synthesized by a microwave combustion method and the effect of Cr3+ substitution on structural, morphological, and magnetic properties of CoFe2O4 was studied. The structural, morphological, and magnetic properties of the products were determined and characterized in detail by X-ray diffraction (XRD), high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM). Cation distribution of calculations confirmed the B site (octahedral site) preference of substituted Cr3+ ions. X-ray analysis showed that all compositions crystallize with a cubic spinel-type structure. The lattice parameter decreased from 8.384 to 8.362 with increasing Cr content. The average crystallite size was found in the range of 30.6-45.4 nm. Magnetization measurements showed that saturation magnetization of products decreases with the increase of the Cr substitution (x).