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1. Introduction

Boundary value problems for differential equations of the second order with retarded argument were studied in [1-5],
and various physical applications of such problems can be found in [2].

The asymptotic formulas for the eigenvalues and eigenfunctions of the boundary problem of Sturm-Liouville type for
the second order differential equation with retarded argument were obtained in [5].

The asymptotic formulas for the eigenvalues and eigenfunctions of the Sturm-Liouville problem with the spectral
parameter in the boundary condition were obtained in [6].

In this paper, we study the eigenvalues and eigenfunctions of the discontinuous boundary value problem with retarded
argument and a spectral parameter in the boundary condition. Namely, we consider the boundary value problem for the
differential equation

pX)Y' () + qx)y(x — A(x)) + 2y(x) =0 (1)
on [0, Z) U (%, 7], with boundary conditions

a;1y(0) + azy’'(0) =0, (2)

y () 4+ diy(m) =0, (3)
and transmission conditions

T T
Y1y (5 —0) =81y (5 +0), (4)
(T .
vy (5 -0) =8 (5 +0). (5)
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where p(x) = pjifx € [0, Z) and p(x) = p3 ifx € (%, 7], the real-valued function q(x) is continuous in [0, Z) U (%, 7| and
has a finite limit g (% +0) = lim, ., 7 40 q(x), the real valued function A(x) > 0 is continuous in [0, %) U (%, 7] and has
a finite limit A (% £ 0) = lim, . 710 A(x),x — A(x) > 0,if x € [0,Z);x— AKX = Z,ifxe (5,7 ] A is a real spectral
parameter; p1, P2, Y1, V2, 81, 02, a1, az, d are arbitrary real numbers; |a;| + |a;] # 0 and lvil + 16i] # Ofori = 1, 2. Also

Y182p1 = y281p2 holds.

It must be noted that some problems with transmission conditions which arise in mechanics (thermal condition problem
for a thin laminated plate) were studied in [7].

Let wq(x, A) be a solution of Eq. (1) on [0, %] satisfying the initial conditions

w1 (0, X)) = ay, w) (0, A) = —ay. (6)

The conditions (6) define a unique solution of Eq. (1) on [0, Z] (2, p. 12]).

After defining the above solution we shall define the solution w, (x, 1) of Eq. (1) on [% n] by means of the solution
w1 (x, A) by the initial conditions

T 1 T , (T _ i
wa (57 )») = J/151 w1 (57 k) , w, (5, }\) = 1/252 ]w/l (E,)h) . (7)

The conditions (7) are defined as a unique solution of Eq. (1) o [% ]
Consequently, the function w (x, A) is defined on [ ) (% ] by the equality

w1(X,A), x¢€ [O, %)

YD o, xe (7]

is such a solution of Eq. (1) on [0, Z) U (%, ] ,which satisfies one of the boundary conditions and both transmission
conditions.

Lemma 1. Let w (x, 1) be a solution of Eq. (1) and A > 0. Then the following integral equations hold:

w1 (x, A)_azcosix—l—p]sinix—f/ q(r) i i(x—r)w1(r—A(r),)L)df (5:«/X,)L>O), (8)
D1 0 D1

S P s p1
wh (Z, A
wz(x,k):ﬁw1(z,k>cosi(x_i)+y2p217(2)5ini( _f)
51 2 p2 2 582 pz 2
1 (% q(® . s g
- = sin— (X —T1t)wy(t — A(r),A)dt (s: k,k>0). 9)
S Jrp D2 D2

Proof. To prove this, it is enough to substltute— a)1(r A)—wi(tr, ) and — a)z(r A) —wf (T, A) instead of — q(”w (t—

A(t), A) and —%wz(r — A(71), M) in the 1r1tegrals in (8) and (9) respectlvely and integrate by parts twice. O
2

Theorem 1. The problem (1)-(5) can have only simple eigenvalues.
Proof. Let A be an eigenvalue of the problem (1)-(5) and
~, 0~ T
o~ ui(x, 1), x€ [0, —),
ux, A) =9 _ - T 2
u(x,A), XE€ <E, n]

be a corresponding eigenfunction. Then from (2) and (6) it follows that the determinant

(0,0 a

w [Th(O, X), wl(O,I)] = a (O 3:) .
1 —

and by Theorem 2.2.2 in [2], the functions U; (x, X) and w1 (x, X) are linearly dependent on [O, %] We can also prove that
the functions U (x, A) and w, (x, A) are linearly dependent on [%, 71]. Hence

T A =Kwx, ) (=1,2) (10)
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for some K; # 0 and K, # 0. We must show that K; = K,. Suppose that K; # K,. From the equalities (4) and (10), we have
zz(” o’X) aa‘(”+oX) LT(T[ X) 5&‘(” X)
12! ) s 1 ) s Yiuq 5 1U2 R
K (” X) 5.K (” X)
wi (—, — wy [ —,

Yiqw, 2 1w 5

1 T ~ T ~
= yiKidry; ws <5 )») — 81K w; (5 k)

T ~
= 5 (K — Ky) ws (E,x).

Since 81 (K7 — K3) # 0 it follows that
T~
w (5,A)=o. (11)
By the same procedure from equality (5) we can derive that

w, (3.%) =o. (12)

From the fact that w, (x, P)t) is a solution of the differential equation (1) on [% 71] and satisfies the initial conditions (11) and

(12) it follows that w; (x, A) = 0 identically on [Z, 7] (cf.[2, p. 12, Theorem 1.2.1]).
By using this, we may also find

T~ ;) STT ~
w; (—, x) - W), (—, k) —o.
2 2
From the latter discussions of wy(x, 3:) it follows that w1 (x, I) = 0 identically on [0, %) U (%, n]. But this contradicts (6),
thus completing the proof. O

2. An existence theorem

The function w(x, 1) defined in Section 1 is a nontrivial solution of Eq. (1) satisfying conditions (2), (4) and (5). Putting
w(x, \) into (3), we get the characteristic equation

FQA) =o' (r, A) + dra(m, L) = 0. (13)
By Theorem 1 the set of eigenvalues of the boundary value problem (1)-(5) coincides with the set of real roots of
Eq.(13).Letq, = - ”/2 |q(z)|dt and g, = ﬂ/z q(v)dr.

Lemma 2. (1) Let A > 4q%. Then for the solution w1 (x, A) of Eq. (8), the following inequality holds:

1 T
lwq (x, V)] < q—,/ 1a2 —|—p1a1, X e [0, 5] (14)
1

(2) Let A > max {4q%, 4q§}, Then for the solution w, (x, A) of Eq. (9), the following inequality holds:

2
|lwa (%, V)] < q—,/ qla2 —|—p]a1 { }, X € [%,n]. (15)

Proof. Let By, = Max[o 1 |wq (x, 1)|. Then from (8), it follows that, for every A > 0, the following inequality holds:

p 1
By, < \/az + g + Bu(h

If s > 2q; we get (14). Differentiating (8) with respect to x, we have

Y1
1

DP2Y2

+
P16

’ s ., S S 1 S
wi(x, A) = ——sin —X — a7 COS —X — —2 q(r) cos — (x — 1) wi(r — A(1))dr. (16)
D1 D1 1 D1

From (16) and (14), it follows that, for s > 2q,, the followmg inequality holds:

|w)(x, V)| < /—4— —|—— 4q2d3 + p*al.



3093

E. Sen, A. Bayramov / Mathematical and Computer Modelling 54 (2011) 3090-3097

Hence
|w) (x, A)! R
— < 4q]a2 +p1a] 17)
S P1(I1
Let By, = max[z .| |w (x, A)|. Then from (9), (14) and (17) it follows that, for s > 2q;, the following inequalities hold
1 ')/] 1
B2A =< — \Y Q1a2 +P1a1 + |P2| \/ qlaz +p1a1 + 73215127
q1 |41 2q2
2 / Y1 b2Y2
By, < — a +p a { + | —=|t.
# ai % i 4 P16
Hence if A > max {4q?, 4¢3} we get (15). O
Theorem 2. The problem (1)-(5) has an infinite set of positive eigenvalues.
Proof. Differentiating (9) with respect to x, we get
S b4 S w , A s
wh(x, 1) = —lwﬁ (—, A) sin — (x— z) + )/2]7(2) cos — (x - E)
D261 2 p2 2 52 p2 2
1 [ s
- — q(t)cos — (x — 1) wy(t — A(7), A)dr. (18)
D2
From (8), (9), (13), (16) and (18), we get
Y1 ST a, . Smw 1 7 .S /T . s
— —|aycos — — —sin — — — q(t) sin — (— - ‘L') w1(t — A(t), A)dt | sin —
D261 2pr s 2p1 spa p1\2 2p;
V2 sa, . Smw ST 1 % s /m
~|—-—sin-——acos — - = q(t) cos — (— — 7.') w1(t — A(1), A)dt
8 p1 2pq 2pr piJo p1 \2
s s
X €0S — — —/ q(t) cos p—(n — Dwy(t — A(7), A)dt
2
ST aip; . SwW 1 bl .S /T ST
+ Ad a; C0Ss — — —— sin — — — q(r)sm—(——r)wl(r—A(T) A)drt | cos —
51 2p; s 2p1 sp1Jo p1\2 2p,
_sa S S 1 b S
YoP2 = sinl — a4y cosl - q(t) cos — (E —r) w1(t — A(1), A)dt
828 P1 2p, 2p1 p1Jo p1\2
. ST T s
X sin — —— q(t) sin —(r — T)wy(t — A(r), A)dt ). (19)
2p2 sp2 Jz p2
There are two possible cases: (1) a; # 0, (2) a = 0. In this paper, we shall consider only case (1). The other cases may be
considered analogically. Let A be sufficiently large. Then, by (14) and (15), Eq. (19) may be rewritten in the form
(20)

scossnw +0(1)=0
2p1p2

Obviously, for large s Eq. (20) has an infinite set of roots. Thus the theorem is proved. O

3. Asymptotic formulas for eigenvalues and eigenfunctions
Now we begin to study asymptotic properties of eigenvalues and eigenfunctions. In the following we shall assume that

s is sufficiently large. From (8) and (14), we get
(21)

w1(x, ) = 0(1) on [0, %]

From (9) and (15), we get

wy(x, ) = 0(1) on [%n]
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The existence and continuity of the derivatives w/,(x, A) for 0 < x < 7, |A| < 0o, and w),(x, A) for T < x < 7, |A| < oo,

7
follow from Theorem 1.4.1 in [2].

W (x,2) = 0(1), xe [o, %] and wh(x, 1) =0(1), xe I:%n] (23)

Theorem 3. Let n be a natural number. For each sufficiently large n, in case (1), there is exactly one eigenvalue of the problem

_ pirs 2
(1)-(5) near orieD 2n+ 1)~

Proof. We consider the expression which is denoted by 0(1) in Eq. (20). If formulas (21)-(23) are taken into consideration,
it can be shown by differentiation with respect to s that for large s this expression has bounded derivative. It is obvious that
for large s the roots of Eq. (20) are situated close to entire numbers. We shall show that, for large n, only one root (20) lies

2.2
(pfr;zz)z (2n + 1)%. We consider the function ¢(s) = scossw % + O(1). Its derivative, which has the form
p1tp2

¢'(s) = cos s ‘;LT}‘)’ZZ —s7 g}fgj sin sz 55

follows by Rolle’s theorem. O

near to each

4+ 0(1), does not vanish for s close to n for sufficiently large n. Thus our assertion

Let n be sufficiently large. In what follows we shall denote by A, = sﬁ the eigenvalue of the problem (1)-(5) situated near

pip3 2 @n+1) : 1
oy 2n+ 1% Wesets, = PR + 8, From (20) it follows that 8, = 0 (1). Consequently
2n+1 1
5 — pp @it D) o <7> . (24)
p1+Dp2 n

The formula (24) makes it possible to obtain asymptotic expressions for the eigenfunction of the problem (1)-(5). From (8),
(16) and (21), we get

1
w1 (X, A) = a; cos ix+0<7), (25)
D1 S
/ sa; . S
w,(x,1) = ——sin—x+0(1). (26)
D1 D1
From (9), (22), (25) and (26), we get
_ 1
wr(X, A) = n% cos s (M + i) +0 <7> . (27)
1 2p1p2 P2 S

By putting (24) in (25) and (27), we derive that

2n+1 1
Uy, = wq (X, Ap) = ay cos Lﬂx—{— 0] <7> ,
p1+D2 n
a — 2n+1 2n+1 1
w2(X,)\n)=y]2COS(n(p2 p1) ( +)+P1( +)x)+0< )
81 2(p1 +p2) p1+p2
Hence the eigenfunctions u,(x) have the following asymptotic representation:

2 1 1
swx—f—o — forxe[O,f),
+ D2 n 2

u (X) — P1

" 14 7 (p2—p1)(2n+1) pi@2n+1) 1 .

~— cos + x)|+0[- forx e (—,71].
& 2(p1 +p2) p1+ D2 n 2

Under some additional conditions, more exact asymptotic formulas which depend upon the retardation may be obtained.
Let us assume that the following conditions are fulfilled:

Uon

a; co

(a) The derivatives q'(x) and A" (x) exist and are bounded in [0, Z) |J (%, 7 | and have finite limits ¢’ (% + 0) = lim,_, 40
q(x)and A" (Z £0) = lim,, = 19 A”(x), respectively.
(b) A'(x) < 1in[0, )| J (%, 7], A0) = 0and lim, .z o A(x) = 0.

By using (b), we have

XxX—Ax) >0, forxe [O, %) and x— A(x) >

SR

, forxe (%,n]. (28)
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From (25), (27) and (28) we have

3095

1
wl(t—A(r),A):azcosi(t—A(r))—l—O(f), (29)
D1 S
— — A 1
wo (r—A(r),)L):Lazcoss<n (P2 = 1) + ! (r))-f—O(f). (30)
31 2p1p2 p2 s
Putting these expressions into (19), we have
d
o = Sdan o sm (P1+p) »n (dalp] N a£> sin ¥ (1 +p2)
4 2p1Db2 1 2p1p2
d 1 /2 A
_ faan [ sin ST (P1 + p2) 9(v) [cos SA®) + cos i(21 — A(r))] dr
31 Lps 2p1p2 0 2 P p1
1 /2 A
— — cos ST (P1 + p2) 9(®) [sin sA@) + sin i(Zr — A(r)):| dr
P1 2p1b2 0 P1 P1
1 — T AT
—I——coswsnmf q(T)[oss ()—I—cosS(ZT—A(T))]dr
p2 2p1p2 p2 7'[/2 p2
1 S — S SA S
— — Cos M cos il q (@) [ @) + sin — (2t — A(r))} dr
D2 2p1b2 7'[/2 p2
1 S — S sA S
— —sin M sin i q— (t) —sin — (2t — A(t))] dr
p2 2p1p2 71/2 2 p2
1 S — S SA S 1
— —sin M co s n ( |: @) —cos — (2t — A(r))} dr} +0 <7) . (31)
p2 2p1p2 rr 2 2 p2 s
Let
1 [* s 1 [ S
Alx,s, A(T)) = = q(t)sin —A(t) dt, B(x, s, A(t)) = = q(t) cos — A(t) dr. (32)
2 Jo p1 2 Jo P
It is obvious that these functions are bounded for0 < x < 7,0 < s < o0. Let
1 [* s 1 [* S
Cx,s, A(t)) = = q(t)sin —A(t) dt, D(x,s, A(T)) = = q(t) cos — A(t) dr. (33)
2 Jap p2 2 Jap D2
It is obvious that these functions are bounded for % <x<m,0<s < oo
Under the conditions (a) and (b) the following formulas
X s 1 X .S 1
q(t)cos —(2t — A(r))dt =0( - |, q(r)sin —Q2t — A(r))dt =0 —
0 P1 N 0 D1 S
X s 1 X s 1 (34)
/ q(t)cos — (2t — A(r))dt =0 <7) , / q(t)sin —(2t — A(tr))dt =0 <7>
/2 D2 S /2 D2 S
can be proved by the same technique in Lemma 3.3.3 in [2]. From (31)-(34) and s, = %ZZH) + &,, we have
) d 2 1
cot(n(2n+1)+”(pl+p2) n) - hth [D(n Pz (@nt 1) ),A(r)>
2 2p1p2 (2n+ 1) p1p2 [ p2 p1+Dp2
da 1 d 2n+1 1
+;pl+i+i3<: pmz<+>,A(,)>] +o(7)
a p2 p1 \2 p1+ D2 n
and finally
2 1 2 d 2 1
Sn:Plpz(n‘l' ) [7[)(71 pip2 2n + ),A(r)>
p1+ D2 71(2n+1) p1+ D2
da 1 b4 2n+1 1
plap 1, dpZ pp@nt D A(r))]—l—O(z). (35)
a pp p1 2 p1+Dp2 n

Thus, we have proven the following theorem.
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Theorem 4. If conditions (a) and (b) are satisfied, then the positive eigenvalues A, = sﬁ of the problem (1)-(5) have the

(35) asymptotic representation for n — oo.
We now may obtain a sharper asymptotic formula for the eigenfunctions. From (8) and (29)
S a S
wq(x,X) = apcos —x — alal sin —x
D1 S D1
apr [~ .S s 1
—— | a(@)sin—(x—1)cos —(r —A(r))dt + 0| 5 |-
0 D1 D1 s

Thus, from (32)-(34)

S
wi(x,\) = aycos —x |1+
D1

A(Z.s, A(r)):|

Sp1

sin =x

b |:a1p1 + 2B s, A(r))} +0 (%) . (36)
s P s

Replacing s by s, and using (35), we have

(2n+1)
pentl | (p1+pz)A(x,%,A(r))

U1, (x) = ap cos

p1+ D2 p1p2 2n+ 1)
(2n+1)
P2 (2n+1) 2 dD (x. PEE. A() gayp,
+a, sin X +
p1+p2 7 (2n+1)p; p2 ap
1 2n+1 2n+1
+7+d3<§’p1pz( + ),A(r)> __ bitp . p2(2n+ )x
p2 2 p1+Dp2 pip2 2n+1) p1+Dp2
B (X’ PIRCHD) (T)) ;
X | ap1 + R +0 (—2> . (37)
P1 n

From (16), (29) and (32), we have

L x, A A, s, A cos =x 1
wikh g S (g ARS AN PR Zpxs, a@) )| +0(5), xe (o, 5]. (38)
s p1 D Sp1 s 1 52 2

From (9), (30), (34), (36) and (38) we have

s A(Z s, AT sin 2% a,B(Z,s, AT
wz(x,k)=?<azcos2n{l+ G ())}— 2 a1p1+M
S

1 P1 SP1 D1

1 s s A(S,s, Az
+O(—2> cos—(x—z)—yz—p2 azsinl 1+u
s D2 2 82p1 2pq Sp1
cos - @B (Z,s, A(t 1 1
LS [ 28G5 A) +0<7> sin S (x—T) - L
s P1 s D2 2 Sp2

X — 1
x/ q(t)sins(x—r)[)/lazcoss(M—i-f—A(r))—i—O()dt]
/2 p2 81 p2 2p; s

A(Z,s, AT C(x,s, A -
_[nel, 4G5 a@) |, necrs aw) cosi<x+”(p2 pl))
81 Sp1 Sp281 D2 2p;

@D (x5, A(T))  w @B (%,s, A7)
i T — apr+ ———
sp281 581
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Now, replacing s by s, and using (35), we have

pa [, @1+pA (3. B0 4 (0))

U (X) = P1+p2
) =
" 8 pp2 2n+ 1)
p1p2(2n+1)
PR (x BBEL A 0) o (plx(zn +1) | 7w —py) @n+ 1))
§1p1ips 2n+ 1) P1+D2 2 (p14b2)
p1p2(2n+1)
Y10z 2 dA (7(, i A (t)> . daip, n 1
8 | m@2n+1) D2 a D2

+

. p1p2(2n+1)
dB(27 p1+p2 »A(T)) <x+7'r(p2—p1))
p1 P2 2p1p2

p1p2@n+1)
azy1 (p1+p2) D (X, piipy A (T)) i (p1 + p2)

- + (a1p
pip3s; 2n+ 1) pipd 1)

+

x  p1p2(2n+1)
aB (5, 71p21+pz , A (r)) sin (plx(Zn +1) 4 w(p, —p1) 2n + ])) 4o ( 1 ) (39)

P P14D2 2(p14D2) n?

Thus, we have proven the following theorem.

Theorem 5. If conditions (a) and (b) are satisfied, then the eigenfunctions u,(x) of the problem (1)-(5) have the following
asymptotic representation for n — oo:

Up(x) forxe [0, %)
Upp(x) forx e (%n]

Up (X) =

where uy,(x) and u,,(x) defined as in (37) and (39), respectively.
4. Conclusion

In this study, first we obtain asymptotic formulas for eigenvalues and eigenfunctions for the discontinuous boundary
value problem with retarded argument which contains a spectral parameter in the boundary condition. Then under
additional conditions (a) and (b), more exact asymptotic formulas which depend upon the retardation are obtained.
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