SPECTRAL PROBLEM FOR THE STURM-LIOUVILLE OPERATOR WITH RETARDED ARGUMENT CONTAINING A SPECTRAL PARAMETER IN THE BOUNDARY CONDITION

E. Şen ${ }^{1}$, M. Acikgoz ${ }^{2}$, and S. Araci 3

UDC 517.9

Abstract

We consider a discontinuous Sturm-Liouville problem with retarded argument containing a spectral parameter in the boundary condition. First, we investigate the simplicity of eigenvalues and then prove the existence theorem. As a result, we obtain the asymptotic formulas for eigenvalues and eigenfunctions.

1. Preliminaries

The boundary-value problems for differential equations of the second order with retarded argument were studied in [1-9]. Various physical applications of these problems can be found in [2]. The asymptotic formulas for the eigenvalues and eigenfunctions of boundary-value problems of the Sturm-Liouville type for the secondorder differential equations with retarded argument were obtained in [1,2,5-9]. The asymptotic formulas for the eigenvalues and eigenfunctions of the classical Sturm-Liouville problem with spectral parameter in the boundary condition were obtained in [10-13].

In the present paper, we study the eigenvalues and eigenfunctions of a discontinuous boundary-value problem with retarded argument and spectral parameter in the boundary condition. This means that we consider a boundaryvalue problem for the differential equation

$$
\begin{equation*}
p(x) y^{\prime \prime}(x)+q(x) y(x-\Delta(x))+\lambda y(x)=0 \tag{1.1}
\end{equation*}
$$

on $\left[0, r_{1}\right) \cup\left(r_{1}, r_{2}\right) \cup\left(r_{2}, \pi\right]$, with boundary conditions

$$
\begin{gather*}
y^{\prime}(0)=0, \tag{1.2}\\
y^{\prime}(\pi)+\lambda y(\pi)=0, \tag{1.3}
\end{gather*}
$$

and jump conditions

$$
\begin{align*}
\gamma_{1} y\left(r_{1}-0\right) & =\delta_{1} y\left(r_{1}+0\right), \tag{1.4}\\
\gamma_{2} y^{\prime}\left(r_{1}-0\right) & =\delta_{2} y^{\prime}\left(r_{1}+0\right), \tag{1.5}\\
\theta_{1} y\left(r_{2}-0\right) & =\eta_{1} y\left(r_{2}+0\right), \tag{1.6}
\end{align*}
$$

[^0]\[

$$
\begin{equation*}
\theta_{2} y^{\prime}\left(r_{2}-0\right)=\eta_{2} y^{\prime}\left(r_{2}+0\right), \tag{1.7}
\end{equation*}
$$

\]

where $p(x)=p_{1}^{2}$ for $x \in\left[0, r_{1}\right), p(x)=p_{2}^{2}$ for $x \in\left(r_{1}, r_{2}\right)$, and $p(x)=p_{3}^{2}$ for $x \in\left(r_{2}, \pi\right]$; the real-valued function $q(x)$ is continuous in $\left[0, r_{1}\right) \cup\left(r_{1}, r_{2}\right) \cup\left(r_{2}, \pi\right]$ and has the finite limits

$$
q\left(r_{1} \pm 0\right)=\lim _{x \rightarrow r_{1} \pm 0} q(x) \quad \text { and } \quad q\left(r_{2} \pm 0\right)=\lim _{x \rightarrow r_{2} \pm 0} q(x) ;
$$

the real valued function $\Delta(x) \geq 0$ is continuous in $\left[0, r_{1}\right) \cup\left(r_{1}, r_{2}\right) \cup\left(r_{2}, \pi\right]$ and has the finite limits

$$
\Delta\left(r_{1} \pm 0\right)=\lim _{x \rightarrow r_{1} \pm 0} \Delta(x) \quad \text { and } \quad \Delta\left(r_{2} \pm 0\right)=\lim _{x \rightarrow r_{2} \pm 0} \Delta(x) ;
$$

$x-\Delta(x) \geq 0$ for $x \in\left[0, \frac{\pi}{2}\right) ; x-\Delta(x) \geq \frac{\pi}{2}$ for $x \in\left(\frac{\pi}{2}, \pi\right] ; \lambda$ is a real spectral parameter; p_{1}, p_{2}, p_{3}, $\gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2}, \theta_{1}, \theta_{2}, \eta_{1}$, and η_{2} are arbitrary real numbers; $\left|\gamma_{i}\right|+\left|\delta_{i}\right| \neq 0$, and $\left|\theta_{i}\right|+\left|\eta_{i}\right| \neq 0$ for $i=1,2$. Moreover, the equalities $\gamma_{1} \delta_{2} p_{1}=\gamma_{2} \delta_{1} p_{2}$ and $\theta_{1} \eta_{2} p_{2}=\theta_{2} \eta_{1} p_{3}$ are true.

It is worth noting that some problems with jump conditions encountered in mechanics (a problem with thermal condition for a thin laminated plate) were studied in [14].

Let $w_{1}(x, \lambda)$ be a solution of Eq. (1.1) on $\left[0, r_{1}\right]$ satisfying the initial conditions

$$
\begin{equation*}
w_{1}(0, \lambda)=1, \quad w_{1}^{\prime}(0, \lambda)=0 . \tag{1.8}
\end{equation*}
$$

Conditions (1.8) define a unique solution of Eq. (1.1) on [0, r_{1}] [2, p. 12].
After defining the indicated solution we define the solution $w_{2}(x, \lambda)$ of Eq. (1.1) on $\left[r_{1}, r_{2}\right]$ by using the solution $w_{1}(x, \lambda)$ with the initial conditions

$$
\begin{equation*}
w_{2}\left(r_{1}, \lambda\right)=\gamma_{1} \delta_{1}^{-1} w_{1}\left(r_{1}, \lambda\right), \quad w_{2}^{\prime}\left(r_{1}, \lambda\right)=\gamma_{2} \delta_{2}^{-1} \omega_{1}^{\prime}\left(r_{1}, \lambda\right) \tag{1.9}
\end{equation*}
$$

Conditions (1.9) are determined as a unique solution of Eq. (1.1) on $\left[r_{1}, r_{2}\right]$.
After defining the indicated solution, we determine the solution $w_{3}(x, \lambda)$ of Eq. (1.1) on $\left[r_{2}, \pi\right]$ by using the solution $w_{2}(x, \lambda)$ and the initial conditions

$$
\begin{equation*}
w_{3}\left(r_{2}, \lambda\right)=\theta_{1} \eta_{1}^{-1} w_{2}\left(r_{2}, \lambda\right), \quad w_{3}^{\prime}\left(r_{2}, \lambda\right)=\theta_{2} \eta_{2}^{-1} \omega_{2}^{\prime}\left(r_{2}, \lambda\right) \tag{1.10}
\end{equation*}
$$

Conditions (1.10) are defined as the unique solution of Eq. (1.1) on $\left[r_{2}, \pi\right]$.
Consequently, the function $w(x, \lambda)$ defined on $\left[0, r_{1}\right) \cup\left(r_{1}, r_{2}\right) \cup\left(r_{2}, \pi\right]$ by the equality

$$
w(x, \lambda)= \begin{cases}w_{1}(x, \lambda), & x \in\left[0, r_{1}\right) \\ w_{2}(x, \lambda), & x \in\left(r_{1}, r_{2}\right) \\ w_{3}(x, \lambda), & x \in\left(r_{2}, \pi\right]\end{cases}
$$

is a solution of Eq. (1.1) on $\left[0, r_{1}\right) \cup\left(r_{1}, r_{2}\right) \cup\left(r_{2}, \pi\right]$ satisfying one of the boundary conditions and both transmission conditions.

Lemma 1.1. Let $w(x, \lambda)$ be a solution of Eq. (1.1) and let $\lambda>0$. Then the following integral equations are true:

$$
\begin{align*}
& w_{1}(x, \lambda)=\cos \frac{s}{p_{1}} x-\frac{1}{s} \int_{0}^{x} \frac{q(\tau)}{p_{1}} \sin \frac{s}{p_{1}}(x-\tau) w_{1}(\tau-\Delta(\tau), \lambda) d \tau, \quad s=\sqrt{\lambda}, \quad \lambda>0, \tag{1.11}\\
& w_{2}(x, \lambda)= \frac{\gamma_{1}}{\delta_{1}} w_{1}\left(r_{1}, \lambda\right) \cos \frac{s}{p_{2}}\left(x-r_{1}\right)+\frac{\gamma_{2} p_{2} w_{1}^{\prime}\left(r_{1}, \lambda\right)}{s \delta_{2}} \sin \frac{s}{p_{2}}\left(x-r_{1}\right) \\
&-\frac{1}{s} \int_{r_{1}}^{x} \frac{q(\tau)}{p_{2}} \sin \frac{s}{p_{2}}(x-\tau) w_{2}(\tau-\Delta(\tau), \lambda) d \tau, \quad s=\sqrt{\lambda}, \quad \lambda>0, \tag{1.12}\\
& w_{3}(x, \lambda)= \frac{\theta_{1}}{\eta_{1}} w_{2}\left(r_{2}, \lambda\right) \cos \frac{s}{p_{3}}\left(x-r_{2}\right)+\frac{\theta_{2} p_{3} w_{2}^{\prime}\left(r_{2}, \lambda\right)}{s \eta_{2}} \sin \frac{s}{p_{3}}\left(x-r_{2}\right) \\
&-\frac{1}{s} \int_{r_{2}}^{x} \frac{q(\tau)}{p_{3}} \sin \frac{s}{p_{3}}(x-\tau) w_{3}(\tau-\Delta(\tau), \lambda) d \tau, \quad s=\sqrt{\lambda}, \quad \lambda>0 . \tag{1.13}
\end{align*}
$$

Proof. To prove this, it is sufficient to substitute

$$
-\frac{s^{2}}{p_{1}^{2}} w_{1}(\tau, \lambda)-w_{1}^{\prime \prime}(\tau, \lambda), \quad-\frac{s^{2}}{p_{2}^{2}} w_{2}(\tau, \lambda)-w_{2}^{\prime \prime}(\tau, \lambda)
$$

and

$$
-\frac{s^{2}}{p_{3}^{2}} w_{3}(\tau, \lambda)-w_{3}^{\prime \prime}(\tau, \lambda)
$$

for

$$
-\frac{q(\tau)}{p_{1}^{2}} w_{1}(\tau-\Delta(\tau), \lambda), \quad-\frac{q(\tau)}{p_{2}^{2}} w_{2}(\tau-\Delta(\tau), \lambda), \quad \text { and } \quad-\frac{q(\tau)}{p_{3}^{2}} w_{3}(\tau-\Delta(\tau), \lambda)
$$

in the integrals in (1.11), (1.12), and (1.13), respectively, and integrate these equations by parts twice.
Theorem 1.1. Problem (1.1)-(1.7) may have only simple eigenvalues.
Proof. Let $\tilde{\lambda}$ be an eigenvalue of problem (1.1)-(1.7) and let

$$
\widetilde{u}(x, \widetilde{\lambda})= \begin{cases}\widetilde{u_{1}}(x, \widetilde{\lambda}), & x \in\left[0, r_{1}\right), \\ \widetilde{u_{2}}(x, \widetilde{\lambda}), & x \in\left(r_{1}, r_{2}\right), \\ \widetilde{u_{3}}(x, \widetilde{\lambda}), & x \in\left(r_{2}, \pi\right],\end{cases}
$$

be the corresponding eigenfunction. Then it follows from (1.2) and (1.8) that the determinant

$$
W\left[\widetilde{u}_{1}(0, \widetilde{\lambda}), w_{1}(0, \widetilde{\lambda})\right]=\left|\begin{array}{ll}
\widetilde{u}_{1}(0, \widetilde{\lambda}) & 1 \\
\widetilde{u}_{1}^{\prime}(0, \widetilde{\lambda}) & 0
\end{array}\right|=0 .
$$

Moreover, by Theorem 2.2.2 in [2] the functions $\widetilde{u}_{1}(x, \widetilde{\lambda})$ and $w_{1}(x, \widetilde{\lambda})$ are linearly dependent on [$0, r_{1}$]. We can also prove that the functions $\widetilde{u}_{2}(x, \widetilde{\lambda})$ and $w_{2}(x, \widetilde{\lambda})$ are linearly dependent on $\left[r_{1}, r_{2}\right]$ and the functions $\widetilde{u}_{3}(x, \widetilde{\lambda})$ and $w_{3}(x, \widetilde{\lambda})$ are linearly dependent on $\left[r_{2}, \pi\right]$. Hence,

$$
\begin{equation*}
\widetilde{u}_{i}(x, \widetilde{\lambda})=K_{i} w_{i}(x, \widetilde{\lambda}), \quad i=1,2,3, \tag{1.14}
\end{equation*}
$$

for some $K_{1} \neq 0, K_{2} \neq 0$, and $K_{3} \neq 0$. We first show that $K_{2}=K_{3}$. Suppose that $K_{2} \neq K_{3}$. It follows from equalities (1.6) and (1.14) that

$$
\begin{aligned}
\theta_{1} \widetilde{u}\left(r_{2}-0, \widetilde{\lambda}\right)-\eta_{1} \widetilde{u}\left(r_{2}+0, \widetilde{\lambda}\right) & =\theta_{1} \widetilde{u_{2}}\left(r_{2}, \widetilde{\lambda}\right)-\eta_{1} \widetilde{u_{3}}\left(r_{2}, \widetilde{\lambda}\right) \\
& =\theta_{1} K_{2} w_{2}\left(r_{2}, \widetilde{\lambda}\right)-\eta_{1} K_{3} w_{3}\left(r_{2}, \widetilde{\lambda}\right) \\
& =\theta_{1} K_{2} \eta_{1} \theta_{1}^{-1} w_{3}\left(r_{2}, \widetilde{\lambda}\right)-\eta_{1} K_{3} w_{3}\left(r_{2}, \widetilde{\lambda}\right) \\
& =\eta_{1}\left(K_{2}-K_{3}\right) w_{3}\left(r_{2}, \widetilde{\lambda}\right)=0 .
\end{aligned}
$$

Since $\eta_{1}\left(K_{2}-K_{3}\right) \neq 0$, we obtain

$$
\begin{equation*}
w_{3}\left(r_{2}, \widetilde{\lambda}\right)=0 \tag{1.15}
\end{equation*}
$$

By using the same procedure arising from (1.7), we conclude that

$$
\begin{equation*}
w_{3}^{\prime}\left(r_{2}, \widetilde{\lambda}\right)=0 \tag{1.16}
\end{equation*}
$$

It follows from the fact that $w_{3}(x, \widetilde{\lambda})$ is a solution of the differential equation (1.1) on $\left[r_{2}, \pi\right]$ and satisfies the initial conditions (1.15) and (1.16) that $w_{3}(x, \widetilde{\lambda})=0$ identically on $\left[r_{2}, \pi\right]$ (cf. [2, p. 12], Theorem 1.2.1).

By using the same procedure, we can also find

$$
w_{1}\left(r_{1}, \tilde{\lambda}\right)=w_{1}^{\prime}\left(r_{1}, \tilde{\lambda}\right)=w_{2}\left(r_{2}, \widetilde{\lambda}\right)=w_{2}^{\prime}\left(r_{2}, \widetilde{\lambda}\right)=0
$$

Thus, we get

$$
w_{2}(x, \widetilde{\lambda})=0 \quad \text { and } \quad w_{1}(x, \widetilde{\lambda})=0
$$

identically on $\left[0, r_{1}\right) \cup\left(r_{1}, r_{2}\right) \cup\left(r_{2}, \pi\right]$. However, this contradicts (1.8), thus completing the proof.

2. Existence Theorem

The function $w(x, \lambda)$ defined in Sec. 1 is a nontrivial solution of Eq. (1.1) satisfying conditions (1.2), (1.4), (1.5), and (1.6). Substituing $w(x, \lambda)$ in (1.3), we arrive at the characteristic equation

$$
\begin{equation*}
F(\lambda) \equiv w^{\prime}(\pi, \lambda)+\lambda w(\pi, \lambda)=0 \tag{2.1}
\end{equation*}
$$

By Theorem 1.1, the set of eigenvalues of the boundary-value problem (1.1)-(1.7) coincides with the set of real roots of Eq. (2.1). Let

$$
q_{1}=\frac{1}{p_{1}} \int_{0}^{r_{1}}|q(\tau)| d \tau, \quad q_{2}=\frac{1}{p_{2}} \int_{r_{1}}^{r_{2}}|q(\tau)| d \tau, \quad \text { and } \quad q_{3}=\frac{1}{p_{3}} \int_{r_{2}}^{\pi}|q(\tau)| d \tau
$$

Lemma 2.1.

(1) Let $\lambda \geq 4 q_{1}^{2}$. Then, for the solution $w_{1}(x, \lambda)$ of Eq. (1.11), the following inequality holds:

$$
\begin{equation*}
\left|w_{1}(x, \lambda)\right| \leq 2, \quad x \in\left[0, r_{1}\right] . \tag{2.2}
\end{equation*}
$$

(2) Let $\lambda \geq \max \left\{4 q_{1}^{2}, 4 q_{2}^{2}\right\}$. Then, for the solution $w_{2}(x, \lambda)$ of Eq. (1.12), the following inequality holds:

$$
\begin{equation*}
\left|w_{2}(x, \lambda)\right| \leq 4\left(\left|\frac{\gamma_{1}}{\delta_{1}}\right|+\left|\frac{p_{2} \gamma_{2}}{p_{1} \delta_{2}}\right|\right), \quad x \in\left[r_{1}, r_{2}\right] . \tag{2.3}
\end{equation*}
$$

(3) Let $\lambda \geq \max \left\{4 q_{1}^{2}, 4 q_{2}^{2}, 4 q_{3}^{2}\right\}$. Then, for the solution $w_{2}(x, \lambda)$ of Eq. (1.13), the following inequality holds:

$$
\begin{equation*}
\left|w_{3}(x, \lambda)\right| \leq \frac{8 \theta_{1} p_{2}+4 \theta_{2} p_{3} \eta_{1}}{\eta_{1} p_{2} \eta_{2}}\left(\left|\frac{\gamma_{1}}{\delta_{1}}\right|+\left|\frac{p_{2} \gamma_{2}}{p_{1} \delta_{2}}\right|\right)+\frac{\theta_{2} p_{3}}{\eta_{2}}\left|\frac{4 \gamma_{1} \delta_{2} q_{1}+\gamma_{2} p_{2} \delta_{1}}{2 p_{2} \delta_{1} \delta_{2} q_{1}}\right|, \quad x \in\left[r_{2}, \pi\right] . \tag{2.4}
\end{equation*}
$$

Proof. Assume that

$$
B_{1 \lambda}=\max _{\left[0, r_{1}\right]}\left|w_{1}(x, \lambda)\right| .
$$

Thus, it follows from (1.11) that the following inequality holds for any $\lambda>0$:

$$
B_{1 \lambda} \leq 1+\frac{1}{s} B_{1 \lambda} q_{1} .
$$

If $s \geq 2 q_{1}$, then we get (2.2). Differentiating (1.11) with respect to x, we find

$$
\begin{equation*}
w_{1}^{\prime}(x, \lambda)=-\frac{s}{p_{1}} \sin \frac{s}{p_{1}} x-\frac{1}{p_{1}^{2}} \int_{0}^{x} q(\tau) \cos \frac{s}{p_{1}}(x-\tau) w_{1}(\tau-\Delta(\tau), \lambda) d \tau \tag{2.5}
\end{equation*}
$$

Taking into account (2.5) and (2.2), for $s \geq 2 q_{1}$, we arrive at the following inequality:

$$
\begin{equation*}
\frac{\left|w_{1}^{\prime}(x, \lambda)\right|}{s} \leq \frac{2}{p_{1}} \tag{2.6}
\end{equation*}
$$

Let

$$
B_{2 \lambda}=\max _{\left[r_{1}, r_{2}\right]}\left|w_{2}(x, \lambda)\right|
$$

Then it follows from (1.12), (2.2), and (2.6) that the following inequality holds for $s \geq 2 q_{1}$:

$$
B_{2 \lambda} \leq 4\left\{\left|\frac{\gamma_{1}}{\delta_{1}}\right|+\left|\frac{p_{2} \gamma_{2}}{p_{1} \delta_{2}}\right|\right\} .
$$

Hence, if

$$
\lambda \geq \max \left\{4 q_{1}^{2}, 4 q_{2}^{2}\right\}
$$

then we get (2.3).
Differentiating (1.12) with respect to x, we obtain

$$
\begin{align*}
w_{2}^{\prime}(x, \lambda)=- & \frac{s \gamma_{1}}{p_{2} \delta_{1}} w_{1}\left(r_{1}, \lambda\right) \sin \frac{s}{p_{2}}\left(x-r_{1}\right)+\frac{\gamma_{2} w_{1}^{\prime}\left(r_{1}, \lambda\right)}{\delta_{2}} \cos \frac{s}{p_{2}}\left(x-r_{1}\right) \\
& -\frac{1}{p_{2}^{2}} \int_{r_{1}}^{x} q(\tau) \cos \frac{s}{p_{2}}(x-\tau) w_{2}(\tau-\Delta(\tau), \lambda) d \tau . \tag{2.7}
\end{align*}
$$

By virtue of (2.7) and (2.3), for $s \geq 2 q_{2}$, the following inequality is true:

$$
\begin{equation*}
\frac{\left|w_{2}^{\prime}(x, \lambda)\right|}{s} \leq \frac{2 \gamma_{1}}{p_{2} \delta_{1}}+\frac{\gamma_{2}}{2 \delta_{2} q_{1}}+\frac{2}{p_{2}}\left\{\left|\frac{\gamma_{1}}{\delta_{1}}\right|+\left|\frac{p_{2} \gamma_{2}}{p_{1} \delta_{2}}\right|\right\} . \tag{2.8}
\end{equation*}
$$

Let

$$
B_{3 \lambda}=\max _{\left[r_{2}, \pi\right]}\left|w_{3}(x, \lambda)\right|,
$$

Thus, it follows from (1.13), (2.2), (2.3), and (2.8) that the following inequality holds for $s \geq 2 q_{3}$:

$$
B_{3 \lambda} \leq \frac{8 \theta_{1} p_{2}+4 \theta_{2} p_{3} \eta_{1}}{\eta_{1} p_{2} \eta_{2}}\left(\left|\frac{\gamma_{1}}{\delta_{1}}\right|+\left|\frac{p_{2} \gamma_{2}}{p_{1} \delta_{2}}\right|\right)+\frac{\theta_{2} p_{3}}{\eta_{2}}\left|\frac{4 \gamma_{1} \delta_{2} q_{1}+\gamma_{2} p_{2} \delta_{1}}{2 p_{2} \delta_{1} \delta_{2} q_{1}}\right| .
$$

Hence, if

$$
\lambda \geq \max \left\{4 q_{1}^{2}, 4 q_{2}^{2}, 4 q_{3}^{2}\right\}
$$

then we arrive at Eq. (2.4).
Theorem 2.1. Problem (1.1)-(1.7) has an infinite set of positive eigenvalues.
Proof. Differentiating (1.13) with respect to x, we obtain

$$
\begin{align*}
w_{3}^{\prime}(x, \lambda)=- & \frac{s \theta_{1}}{p_{3} \eta_{1}} w_{2}\left(r_{2}, \lambda\right) \sin \frac{s}{p_{3}}\left(x-r_{2}\right)+\frac{\theta_{2} w_{2}^{\prime}\left(r_{2}, \lambda\right)}{\eta_{2}} \cos \frac{s}{p_{3}}\left(x-r_{2}\right) \\
& -\frac{1}{p_{3}^{2}} \int_{r_{2}}^{x} q(\tau) \cos \frac{s}{p_{3}}(x-\tau) w_{3}(\tau-\Delta(\tau), \lambda) d \tau . \tag{2.9}
\end{align*}
$$

From (1.11)-(1.13), (2.1), (2.5), (2.7), and (2.9), we get

$$
-\frac{s \theta_{1}}{p_{3} \eta_{1}}\left[\frac{\gamma_{1}}{\delta_{1}}\left(\cos \frac{s r_{1}}{p_{1}}-\frac{1}{s p_{1}} \int_{0}^{r_{1}} q(\tau) \sin \frac{s}{p_{1}}\left(r_{1}-\tau\right) w_{1}(\tau-\Delta(\tau), \lambda) d \tau\right) \cos \frac{s}{p_{2}}\left(r_{2}-r_{1}\right)\right.
$$

$$
\begin{aligned}
& +\frac{\gamma_{2} p_{2}}{s \delta_{2}}\left(-\frac{s}{p_{1}} \sin \frac{s r_{1}}{p_{1}}-\frac{1}{p_{1}^{2}} \int_{0}^{r_{1}} q(\tau) \cos \frac{s}{p_{1}}\left(r_{1}-\tau\right) w_{1}(\tau-\Delta(\tau), \lambda) d \tau\right) \sin \frac{s}{p_{2}}\left(r_{2}-r_{1}\right) \\
& \left.-\frac{1}{s p_{2}} \int_{r_{1}}^{r_{2}} q(\tau) \sin \frac{s}{p_{2}}\left(r_{2}-\tau\right) w_{2}(\tau-\Delta(\tau), \lambda) d \tau\right] \sin \frac{s}{p_{3}}\left(\pi-r_{2}\right) \\
& +\frac{\theta_{2}}{\eta_{2}}\left[-\frac{s \gamma_{1}}{p_{2} \delta_{1}}\left(\cos \frac{s r_{1}}{p_{1}}-\frac{1}{s p_{1}} \int_{0}^{r_{1}} q(\tau) \sin \frac{s}{p_{1}}\left(r_{1}-\tau\right) w_{1}(\tau-\Delta(\tau), \lambda) d \tau\right) \sin \frac{s}{p_{2}}\left(r_{2}-r_{1}\right)\right. \\
& +\frac{\gamma_{2}}{\delta_{2}}\left(-\frac{s}{p_{1}} \sin \frac{s r_{1}}{p_{1}}-\frac{1}{p_{1}^{2}} \int_{0}^{r_{1}} q(\tau) \cos \frac{s}{p_{1}}\left(r_{1}-\tau\right) w_{1}(\tau-\Delta(\tau), \lambda) d \tau\right) \cos \frac{s}{p_{2}}\left(r_{2}-r_{1}\right) \\
& \left.-\frac{1}{p_{2}^{2}} \int_{r_{1}}^{r_{2}} q(\tau) \cos \frac{s}{p_{2}}\left(r_{2}-\tau\right) w_{2}(\tau-\Delta(\tau), \lambda) d \tau\right] \cos \frac{s}{p_{3}}\left(\pi-r_{2}\right) \\
& -\frac{1}{p_{3}^{2}} \int_{r_{2}}^{\pi} q(\tau) \cos \frac{s}{p_{3}}(\pi-\tau) w_{3}(\tau-\Delta(\tau), \lambda) d \tau \\
& +\lambda\left\{\frac { \theta _ { 1 } } { \eta _ { 1 } } \left[\frac{\gamma_{1}}{\delta_{1}}\left(\cos \frac{s r_{1}}{p_{1}}-\frac{1}{s p_{1}} \int_{0}^{r_{1}} q(\tau) \sin \frac{s}{p_{1}}\left(r_{1}-\tau\right) w_{1}(\tau-\Delta(\tau), \lambda) d \tau\right) \cos \frac{s}{p_{2}}\left(r_{2}-r_{1}\right)\right.\right. \\
& +\frac{\gamma_{2} p_{2}}{s \delta_{2}}\left(-\frac{s}{p_{1}} \sin \frac{s r_{1}}{p_{1}}-\frac{1}{p_{1}^{2}} \int_{0}^{r_{1}} q(\tau) \cos \frac{s}{p_{1}}\left(r_{1}-\tau\right) w_{1}(\tau-\Delta(\tau), \lambda) d \tau\right) \sin \frac{s}{p_{2}}\left(r_{2}-r_{1}\right) \\
& \left.-\frac{1}{s p_{2}} \int_{r_{1}}^{r_{2}} q(\tau) \sin \frac{s}{p_{2}}\left(r_{2}-\tau\right) w_{2}(\tau-\Delta(\tau), \lambda) d \tau\right] \cos \frac{s}{p_{3}}\left(\pi-r_{2}\right) \\
& +\frac{\theta_{2} p_{3}}{s \eta_{2}}\left[-\frac{s \gamma_{1}}{p_{2} \delta_{1}}\left(\cos \frac{s r_{1}}{p_{1}}-\frac{1}{s p_{1}} \int_{0}^{r_{1}} q(\tau) \sin \frac{s}{p_{1}}\left(r_{1}-\tau\right) w_{1}(\tau-\Delta(\tau), \lambda) d \tau\right) \sin \frac{s}{p_{2}}\left(r_{2}-r_{1}\right)\right. \\
& +\frac{\gamma_{2}}{\delta_{2}}\left(-\frac{s}{p_{1}} \sin \frac{s r_{1}}{p_{1}}-\frac{1}{p_{1}^{2}} \int_{0}^{r_{1}} q(\tau) \cos \frac{s}{p_{1}}\left(r_{1}-\tau\right) w_{1}(\tau-\Delta(\tau), \lambda) d \tau\right) \cos \frac{s}{p_{2}}\left(r_{2}-r_{1}\right) \\
& \left.-\frac{1}{p_{2}^{2}} \int_{r_{1}}^{r_{2}} q(\tau) \cos \frac{s}{p_{2}}\left(r_{2}-\tau\right) w_{2}(\tau-\Delta(\tau), \lambda) d \tau\right] \sin \frac{s}{p_{3}}\left(\pi-r_{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
\left.-\frac{1}{s p_{3}} \int_{r_{2}}^{\pi} q(\tau) \sin \frac{s}{p_{3}}(\pi-\tau) w_{3}(\tau-\Delta(\tau), \lambda) d \tau\right\}=0 \tag{2.10}
\end{equation*}
$$

Let λ be sufficiently large. Then, by (2.2)-(2.4), Eq. (2.10) can be rewritten in the form

$$
\begin{equation*}
s \cos s\left(\frac{r_{1}}{p_{1}}+\frac{r_{2}-r_{1}}{p_{2}}+\frac{\pi-r_{2}}{p_{3}}\right)+O(1)=0 \tag{2.11}
\end{equation*}
$$

Obviously, for large s, Eq. (2.11) has an infinite set of roots. Thus, we arrive at the required result.

3. Asymptotic Formulas for Eigenvalues and Eigenfunctions

We now begin to study the asymptotic properties of eigenvalues and eigenfunctions. In what follows, we assume that s is sufficiently large. From (1.11) and (2.2), we get

$$
\begin{equation*}
w_{1}(x, \lambda)=O(1) \tag{3.1}
\end{equation*}
$$

It follows from expressions (1.12) and (2.3) that

$$
\begin{equation*}
w_{2}(x, \lambda)=O(1) \tag{3.2}
\end{equation*}
$$

By virtue of (1.13) and (2.4), we arrive at the following equation:

$$
\begin{equation*}
w_{3}(x, \lambda)=O(1) \tag{3.3}
\end{equation*}
$$

The existence and continuity of the derivatives $w_{1 s}^{\prime}(x, \lambda)$ for $0 \leq x \leq r_{1},|\lambda|<\infty, w_{2 s}^{\prime}(x, \lambda)$ for $r_{1} \leq x \leq$ $r_{2},|\lambda|<\infty$, and $w_{3 s}^{\prime}(x, \lambda)$ for $r_{2} \leq x \leq \pi,|\lambda|<\infty$ follows from Theorem 1.4.1 in [2]:

$$
\begin{array}{ll}
w_{1 s}^{\prime}(x, \lambda)=O(1), & x \in\left[0, r_{1}\right] \\
w_{2 s}^{\prime}(x, \lambda)=O(1), & x \in\left[r_{1}, r_{2}\right] \tag{3.4}\\
w_{3 s}^{\prime}(x, \lambda)=O(1), & x \in\left[r_{2}, \pi\right]
\end{array}
$$

Theorem 3.1. Let n be a natural number. For any sufficiently large n, there is exactly one eigenvalue of problem (1.1)-(1.7) near

$$
\frac{(n+1 / 2)^{2} \pi^{2}}{\left(r_{1} / p_{1}+\left(r_{2}-r_{1}\right) / p_{2}+\left(\pi-r_{2}\right) / p_{3}\right)^{2}}
$$

Proof. We now consider the expression denoted by $O(1)$ in Eq. (2.11). If relations (3.1)-(3.4) are taken into account, then it can be shown by differentiation with respect to s that, for large s, the derivative of this expression is bounded. We now show that, for large n, only one root of (2.11) lies near each

$$
\frac{(n+1 / 2)^{2} \pi^{2}}{\left(r_{1} / p_{1}+\left(r_{2}-r_{1}\right) / p_{2}+\left(\pi-r_{2}\right) / p_{3}\right)^{2}}
$$

Consider a function

$$
\phi(s)=s \cos s\left(\frac{r_{1}}{p_{1}}+\frac{r_{2}-r_{1}}{p_{2}}+\frac{\pi-r_{2}}{p_{3}}\right)+O(1) .
$$

Its derivative has the form

$$
\begin{aligned}
\phi^{\prime}(s)= & \cos s\left(\frac{r_{1}}{p_{1}}+\frac{r_{2}-r_{1}}{p_{2}}+\frac{\pi-r_{2}}{p_{3}}\right) \\
& -s\left(\frac{r_{1}}{p_{1}}+\frac{r_{2}-r_{1}}{p_{2}}+\frac{\pi-r_{2}}{p_{3}}\right) \sin s\left(\frac{r_{1}}{p_{1}}+\frac{r_{2}-r_{1}}{p_{2}}+\frac{\pi-r_{2}}{p_{3}}\right)+O(1)
\end{aligned}
$$

and does not vanish for s close to sufficiently large n. Thus, our assertion follows from the Rolle theorem.
Let n be sufficiently large. In what follows, we denote by $\lambda_{n}=s_{n}^{2}$ the eigenvalue of problem (1.1)-(1.7) located near

$$
\frac{(n+1 / 2)^{2} \pi^{2}}{\left(r_{1} / p_{1}+\left(r_{2}-r_{1}\right) / p_{2}+\left(\pi-r_{2}\right) / p_{3}\right)^{2}} .
$$

We set

$$
s_{n}=\frac{\left(n+\frac{1}{2}\right) \pi}{\left(\frac{r_{1}}{p_{1}}+\frac{r_{2}-r_{1}}{p_{2}}+\frac{\pi-r_{2}}{p_{3}}\right)}+\delta_{n}
$$

It follows from (2.11) that

$$
\delta_{n}=O\left(\frac{1}{n}\right) .
$$

Therefore, we obtain

$$
\begin{equation*}
s_{n}=\frac{\left(n+\frac{1}{2}\right) \pi}{\left(\frac{r_{1}}{p_{1}}+\frac{r_{2}-r_{1}}{p_{2}}+\frac{\pi-r_{2}}{p_{3}}\right)}+O\left(\frac{1}{n}\right) . \tag{3.5}
\end{equation*}
$$

Relation (3.5) makes it possible to obtain asymptotic expressions for the eigenfunctions of problem (1.1)-(1.7). By (1.11), (2.5), and (3.1), we get

$$
\begin{align*}
w_{1}(x, \lambda) & =\cos \frac{s x}{p_{1}}+O\left(\frac{1}{s}\right), \tag{3.6}\\
w_{1}^{\prime}(x, \lambda) & =-\frac{s}{p_{1}} \sin \frac{s x}{p_{1}}+O(1) \tag{3.7}
\end{align*}
$$

By virtue of (1.12), (3.2), (3.6), and (3.7), we find

$$
\begin{align*}
& w_{2}(x, \lambda)=\frac{\gamma_{1}}{\delta_{1}} \cos \frac{s}{p_{2}}\left(\frac{r_{1}\left(p_{2}-p_{1}\right)}{p_{1}}+x\right)+O\left(\frac{1}{s}\right), \tag{3.8}\\
& w_{2}^{\prime}(x, \lambda)=-\frac{s \gamma_{1}}{\delta_{1} p_{2}} \sin \frac{s}{p_{2}}\left(\frac{r_{1}\left(p_{2}-p_{1}\right)}{p_{1}}+x\right)+O(1) . \tag{3.9}
\end{align*}
$$

In view of (1.13), (3.3), (3.8), and (3.9), we conclude that

$$
\begin{equation*}
w_{3}(x, \lambda)=\frac{\theta_{1} \gamma_{1}}{\eta_{1} \delta_{1}} \cos \frac{s}{p_{3}}\left(\frac{p_{3}\left(r_{1}\left(p_{2}-p_{1}\right)+p_{1} r_{2}\right)-r_{2} p_{1} p_{2}}{p_{1} p_{2}}+x\right)+O\left(\frac{1}{s}\right) . \tag{3.10}
\end{equation*}
$$

Substituting (3.5) in (3.6), (3.8), and (3.10), we immediately obtain

$$
\begin{aligned}
& u_{1 n}(x)=\cos \left(\frac{\left(n+\frac{1}{2}\right) \pi x}{p_{1}\left(\frac{r_{1}}{p_{1}}+\frac{r_{2}-r_{1}}{p_{2}}+\frac{\pi-r_{2}}{p_{3}}\right)}\right)+O\left(\frac{1}{n}\right), \\
& u_{2 n}(x)=\frac{\gamma_{1}}{\delta_{1}} \cos \left(\frac{\left(n+\frac{1}{2}\right) \pi}{p_{2}\left(\frac{r_{1}}{p_{1}}+\frac{r_{2}-r_{1}}{p_{2}}+\frac{\pi-r_{2}}{p_{3}}\right)}\left(\frac{r_{1}\left(p_{2}-p_{1}\right)}{p_{1}}+x\right)\right)+O\left(\frac{1}{n}\right),
\end{aligned}
$$

$$
u_{3 n}(x)=\frac{\theta_{1} \gamma_{1}}{\eta_{1} \delta_{1}}
$$

$$
\times \cos \left(\frac{\left(n+\frac{1}{2}\right) \pi}{p_{3}\left(\frac{r_{1}}{p_{1}}+\frac{r_{2}-r_{1}}{p_{2}}+\frac{\pi-r_{2}}{p_{3}}\right)}\left(\frac{p_{3}\left(r_{1}\left(p_{2}-p_{1}\right)+p_{1} r_{2}\right)-r_{2} p_{1} p_{2}}{p_{1} p_{2}}+x\right)\right)+O\left(\frac{1}{n}\right) .
$$

Hence, the eigenfunctions $u_{n}(x)$ have the following asymptotic representation:

$$
u_{n}(x)= \begin{cases}u_{1 n}(x)=w_{1}\left(x, \lambda_{n}\right), & x \in\left[0, r_{1}\right), \\ u_{2 n}(x)=w_{2}\left(x, \lambda_{n}\right), & x \in\left(r_{1}, r_{2}\right), \\ u_{3 n}(x)=w_{3}\left(x, \lambda_{n}\right), & x \in\left(r_{2}, \pi\right] .\end{cases}
$$

Under certain additional conditions, we can obtain more exact asymptotic formulas depending on the delay. Assume that the following conditions are satisfied:
(a) the derivatives $q^{\prime}(x)$ and $\Delta^{\prime \prime}(x)$ exist, are bounded in $\left[0, r_{1}\right) \cup\left(r_{1}, r_{2}\right) \cup\left(r_{2}, \pi\right]$, and have the following finite limits:

$$
q^{\prime}\left(r_{1} \pm 0\right)=\lim _{x \rightarrow r_{1} \pm 0} q^{\prime}(x), \quad q^{\prime}\left(r_{2} \pm 0\right)=\lim _{x \rightarrow r_{2} \pm 0} q^{\prime}(x),
$$

$$
\Delta^{\prime \prime}\left(r_{1} \pm 0\right)=\lim _{x \rightarrow r_{1} \pm 0} \Delta^{\prime \prime}(x), \quad \text { and } \quad \Delta^{\prime \prime}\left(r_{2} \pm 0\right)=\lim _{x \rightarrow r_{2} \pm 0} \Delta^{\prime \prime}(x)
$$

respectively;
(b) $\Delta^{\prime}(x) \leq 1$ in $\left[0, r_{1}\right) \cup\left(r_{1}, r_{2}\right) \cup\left(r_{2}, \pi\right], \Delta(0)=0, \lim _{x \rightarrow r_{1}+0} \Delta(x)=0$, and $\lim _{x \rightarrow r_{2}+0} \Delta(x)=0$.

By using (b), we find

$$
\begin{align*}
& x-\Delta(x) \geq 0 \quad \text { for } \quad x \in\left[0, r_{1}\right), \\
& x-\Delta(x) \geq r_{1} \quad \text { for } \quad x \in\left(r_{1}, r_{2}\right), \tag{3.11}\\
& x-\Delta(x) \geq r_{2} \quad \text { for } \quad x \in\left(r_{2}, \pi\right] .
\end{align*}
$$

It follows from (3.6), (3.8), (3.10), and (3.11) that

$$
\begin{align*}
& w_{1}(\tau-\Delta(\tau), \lambda)=\cos \frac{s(\tau-\Delta(\tau))}{p_{1}}+O\left(\frac{1}{s}\right) \\
& w_{2}(\tau-\Delta(\tau), \lambda)=\frac{\gamma_{1}}{\delta_{1}} \frac{\gamma_{1}}{\delta_{1}} \cos \frac{s}{p_{2}}\left(\frac{r_{1}\left(p_{2}-p_{1}\right)}{p_{1}}+\tau-\Delta(\tau)\right)+O\left(\frac{1}{s}\right) \tag{3.12}\\
& w_{3}(\tau-\Delta(\tau), \lambda)=\frac{\theta_{1} \gamma_{1}}{\eta_{1} \delta_{1}} \cos \frac{s}{p_{3}}\left(\frac{p_{3}\left(r_{1}\left(p_{2}-p_{1}\right)+p_{1} r_{2}\right)-r_{2} p_{1} p_{2}}{p_{1} p_{2}}+\tau-\Delta(\tau)\right)+O\left(\frac{1}{s}\right) .
\end{align*}
$$

Under the conditions (a) and (b), the formulas

$$
O\left(\frac{1}{s}\right)=\left\{\begin{array}{l}
\int_{0}^{r_{1}} \frac{q(\tau)}{2} \sin \frac{s}{p_{1}}(2 \tau-\Delta(\tau)) d \tau \tag{3.13}\\
\int_{0}^{r_{1}} \frac{q(\tau)}{2} \cos \frac{s}{p_{1}}(2 \tau-\Delta(\tau)) d \tau \\
\int_{r_{1}}^{r_{2}} \frac{q(\tau)}{2} \sin \frac{s}{p_{2}}(2 \tau-\Delta(\tau)) d \tau \\
\int_{r_{1}}^{r_{2}} \frac{q(\tau)}{2} \cos \frac{s}{p_{2}}(2 \tau-\Delta(\tau)) d \tau \\
\int_{r_{2}}^{\pi} \frac{q(\tau)}{2} \sin \frac{s}{p_{3}}(2 \tau-\Delta(\tau)) d \tau \\
\int_{r_{2}}^{\pi} \frac{q(\tau)}{2} \cos \frac{s}{p_{3}}(2 \tau-\Delta(\tau)) d \tau
\end{array}\right.
$$

can be proved by using the same technique as in Lemma 3.3.3 from [2]. By using the notation

$$
\begin{array}{cc}
A(x)=\int_{0}^{x} \frac{q(\tau)}{2} \sin \frac{s \Delta(\tau)}{p_{1}} d \tau, & B(x)=\int_{0}^{x} \frac{q(\tau)}{2} \cos \frac{s \Delta(\tau)}{p_{1}} d \tau, \\
C(x)=\int_{r_{1}}^{x} \frac{q(\tau)}{2} \sin \frac{s \Delta(\tau)}{p_{2}} d \tau, & D(x)=\int_{r_{1}}^{x} \frac{q(\tau)}{2} \cos \frac{s \Delta(\tau)}{p_{2}} d \tau, \\
E(x)=\int_{r_{2}}^{x} \frac{q(\tau)}{2} \sin \frac{s \Delta(\tau)}{p_{3}} d \tau, & F(x)=\int_{r_{2}}^{x} \frac{q(\tau)}{2} \cos \frac{s \Delta(\tau)}{p_{3}} d \tau, \\
Z_{p}^{r}=\frac{r_{1}}{p_{1}}+\frac{r_{2}-r_{1}}{p_{2}}+\frac{\pi-r_{2}}{p_{3}}, & \Delta_{p}^{r}=\frac{1}{p_{3}}+\frac{B\left(r_{1}\right)}{p_{1}}+\frac{D\left(r_{2}\right)}{p_{2}}+\frac{F(\pi)}{p_{3}}
\end{array}
$$

and substituting expressions (3.13) in (2.10) and then using

$$
s_{n}=\frac{(n+1 / 2) \pi}{Z_{p}^{r}}+\delta_{n},
$$

we get

$$
\delta_{n}=-\frac{\Delta_{p}^{r}}{(n+1 / 2) \pi}+O\left(\frac{1}{n^{2}}\right)
$$

and, finally,

$$
\begin{equation*}
s_{n}=\frac{\left(n+\frac{1}{2}\right) \pi}{Z_{p}^{r}}-\frac{\Delta_{p}^{r}}{\left(n+\frac{1}{2}\right) \pi}+O\left(\frac{1}{n^{2}}\right) \tag{3.14}
\end{equation*}
$$

Thus, we have proved the following theorem:
Theorem 3.2. If the conditions (a) and (b) are satisfied, then the positive eigenvalues $\lambda_{n}=s_{n}^{2}$ of problem (1.1)-(1.7) admit the asymptotic representation (3.14) as $n \rightarrow \infty$.

We can now obtain a more accurate asymptotic formula for the eigenfunctions. It follows from (1.11) and (3.12) that

$$
\begin{equation*}
w_{1}(x, \lambda)=\cos \frac{s x}{p_{1}}\left[1+\frac{A(x)}{s p_{1}}\right]-\frac{B(x) \sin \frac{s x}{p_{1}}}{s p_{1}}+O\left(\frac{1}{s^{2}}\right) . \tag{3.15}
\end{equation*}
$$

Replacing s with s_{n} and using (3.14), we get

$$
\begin{equation*}
u_{1 n}(x)=\cos \frac{\left(n+\frac{1}{2}\right) \pi x}{p_{1} Z_{p}^{r}}\left[1+\frac{A(x) Z_{p}^{r}}{\left(n+\frac{1}{2}\right) \pi p_{1}}\right]+\left[\frac{x \Delta_{p}^{r}}{\left(n+\frac{1}{2}\right) \pi p_{1}}\right] \sin \frac{\left(n+\frac{1}{2}\right) \pi x}{p_{1} Z_{p}^{r}}+O\left(\frac{1}{n^{2}}\right) . \tag{3.16}
\end{equation*}
$$

From (1.12), (2.5), (3.12), (3.13), and (3.15), we obtain

$$
\begin{align*}
w_{2}(x, \lambda)=\frac{\gamma_{1}}{\delta_{1}}\{ & {\left[1+\frac{1}{s}\left(\frac{A\left(r_{1}\right)}{p_{1}}+\frac{C(x)}{p_{2}}\right)\right] \cos \left(\frac{s}{p_{2}}\left(\frac{r_{1}\left(p_{2}-p_{1}\right)}{2 p_{1}}+x\right)\right) } \\
& \left.-\frac{\left(D(x) / p_{2}+B\left(r_{1}\right) / p_{1}\right)}{s} \sin \frac{s}{p_{2}}\left(\frac{r_{1}\left(p_{2}-p_{1}\right)}{2 p_{1}}+x\right)\right\}+O\left(\frac{1}{s^{2}}\right) . \tag{3.17}
\end{align*}
$$

Further, replacing s with s_{n} and using (3.14), we find

$$
\begin{align*}
u_{2 n}(x)=\frac{\gamma_{1}}{\delta_{1}}\{ & {\left[1+\frac{Z_{p}^{r}\left(\frac{A\left(r_{1}\right)}{p_{1}}+\frac{C(x)}{p_{2}}\right)}{\left(n+\frac{1}{2}\right) \pi}\right] \cos \left(\frac{\left(n+\frac{1}{2}\right) \pi}{Z_{p}^{r} p_{2}}\left(\frac{r_{1}\left(p_{2}-p_{1}\right)}{2 p_{1}}+x\right)\right) } \\
& +\frac{Z_{p}^{r} \Delta_{p}^{r}\left(\frac{D(x)}{p_{2}}+\frac{B\left(r_{1}\right)}{p_{1}}\right)\left(\frac{r_{1}\left(p_{2}-p_{1}\right)}{2 p_{1}}+x\right)}{p_{2}\left(\frac{1}{2}\right)^{2} \pi^{2}} \\
& \left.\times \sin \left(\frac{\left(n+\frac{1}{2}\right) \pi}{Z_{p}^{r} p_{2}}\left(\frac{r_{1}\left(p_{2}-p_{1}\right)}{2 p_{1}}+x\right)\right)\right\}+O\left(\frac{1}{n^{2}}\right) . \tag{3.18}
\end{align*}
$$

It follows from (1.13), (2.7), (3.12), (3.13), and (3.17) that

$$
\begin{aligned}
& w_{3}(x, \lambda)=\frac{\theta_{1} \gamma_{1}}{\eta_{1} \delta_{1}}\{ {\left[1+\frac{\left(\frac{A\left(r_{1}\right)}{p_{1}}+\frac{C\left(r_{2}\right)}{p_{2}}+\frac{E(x)}{p_{3}}\right)}{s}\right] } \\
& \times \cos \left(\frac{s}{p_{3}}\left(\frac{p_{3}\left(r_{1}\left(p_{2}-p_{1}\right)+p_{1} r_{2}\right)-r_{2} p_{1} p_{2}}{p_{1} p_{2}}+x\right)\right) \\
&-\frac{1}{s}\left(\frac{B\left(r_{1}\right)}{p_{1}}+\frac{D\left(r_{2}\right)}{p_{2}}+\frac{F(x)}{p_{3}}\right) \\
&\left.\times \sin \left(\frac{s}{p_{3}}\left(\frac{p_{3}\left(r_{1}\left(p_{2}-p_{1}\right)+p_{1} r_{2}\right)-r_{2} p_{1} p_{2}}{p_{1} p_{2}}+x\right)\right)\right\}+O\left(\frac{1}{s^{2}}\right) .
\end{aligned}
$$

Finally, replacing s with s_{n} and using (3.14), we obtain

$$
\begin{align*}
& u_{3 n}(x)=\frac{\theta_{1} \gamma_{1}}{\eta_{1} \delta_{1}}\left\{\left[1+\frac{Z_{p}^{r}\left(\frac{A\left(r_{1}\right)}{p_{1}}+\frac{C\left(r_{2}\right)}{p_{2}}+\frac{E(x)}{p_{3}}\right)}{\left(n+\frac{1}{2}\right) \pi}\right]\right. \\
& \times \cos \left(\frac{\left(n+\frac{1}{2}\right) \pi}{Z_{p}^{r} p_{3}}\left(\frac{p_{3}\left(r_{1}\left(p_{2}-p_{1}\right)+p_{1} r_{2}\right)-r_{2} p_{1} p_{2}}{p_{1} p_{2}}+x\right)\right) \\
&+ \frac{Z_{p}^{r} \Delta_{p}^{r}\left(\frac{B\left(r_{1}\right)}{p_{1}}+\frac{D\left(r_{2}\right)}{p_{2}}+\frac{F(x)}{p_{3}}\right)}{p_{3}\left(n+\frac{1}{2}\right)^{2} \pi^{2}}\left(\frac{p_{3}\left(r_{1}\left(p_{2}-p_{1}\right)+p_{1} r_{2}\right)-r_{2} p_{1} p_{2}}{p_{1} p_{2}}+x\right) \\
&\left.\times \sin \left(\frac{\left(n+\frac{1}{2}\right) \pi}{Z_{p}^{r} p_{3}}\left(\frac{p_{3}\left(r_{1}\left(p_{2}-p_{1}\right)+p_{1} r_{2}\right)-r_{2} p_{1} p_{2}}{p_{1} p_{2}}+x\right)\right)\right\}+O\left(\frac{1}{n^{2}}\right) . \tag{3.19}
\end{align*}
$$

Thus, we have proved the following theorem.
Theorem 3.3. If the conditions (a) and (b) are satisfied, then the eigenfunctions $u_{n}(x)$ of problem (1.1)-(1.7) admit the following asymptotic representation for $n \rightarrow \infty$:

$$
u_{n}(x)= \begin{cases}u_{1 n}(x), & x \in\left[0, r_{1}\right), \\ u_{2 n}(x), & x \in\left(r_{1}, r_{2}\right), \\ u_{3 n}(x), & x \in\left(r_{2}, \pi\right]\end{cases}
$$

where $u_{1 n}(x), u_{2 n}(x)$ and $u_{3 n}(x)$ are defined as in (3.16), (3.18), and (3.19), respectively.

REFERENCES

1. S. B. Norkin, "On boundary problem of the Sturm-Liouville-type for the second-order differential equation with retarded argument," Izv. Vyssh. Uchebn. Zaved. Mat., 6, No. 7, 203-214 (1958).
2. S. B. Norkin, "Differential equations of the second order with retarded argument," Transl. Math. Monogr., AMS, Providence, RI (1972).
3. R. Bellman and K. L. Cook, Differential-Difference Equations, Academic Press, New York; London (1963).
4. G. V. Demidenko and V. A. Likhoshvai, "On differential equations with retarded argument," Sib. Mat. Zh., 46, No. 3, 417-430 (2005).
5. E. Şen and A. Bayramov, "Calculation of eigenvalues and eigenfunctions of a discontinuous boundary-value problem with retarded argument containing a spectral parameter in the boundary condition," Math. Comput. Model., 54, 3090-3097 (2011).
6. E. Şen and A. Bayramov, "Asymptotic formulations of the eigenvalues and eigenfunctions for a boundary-value problem," Math. Meth. Appl. Sci., 36, 1512-1519 (2013).
7. E. Şen, S. Araci, and M. Acikgoz, "Asymptotic properties of a new Sturm-Liouville problem with retarded argument," Math. Methods Appl. Sci., 37, 2619-2625 (2014).
8. A. Bayramov, S. C̣alıṣkan, and S. Uslu, "Computation of eigenvalues and eigenfunctions of a discontinuous boundary-value problem with retarded argument," Appl. Math. Comput., 191, 592-600 (2007).
9. F. A. Akgun, A. Bayramov, and M. Bayramoğlu, "Discontinuous boundary-value problems with retarded argument and eigenparameter-dependent boundary conditions," Mediterran. J. Math., 10, 277-288 (2013).
10. C. T. Fulton, "Two-point boundary-value problems with eigenvalue parameter contained in the boundary conditions," Proc. Roy. Soc. Edinburgh Sect. A, 77, 293-308 (1977).
11. Q. Yang and W. Wang, "Asymptotic behavior of a differential operator with discontinuities at two points," Math. Meth. Appl. Sci., 34, 373-383 (2011).
12. N. Altınışık, O. Sh. Mukhtarov, and M. Kadakal, "Asymptotic formulas for eigenfunctions of the Sturm-Liouville problems with eigenvalue parameter in the boundary conditions," Kuwait J. Sci., 39, No. 1, 1-17 (2012).
13. E. Şe and O. Sh. Mukhtarov, "Spectral properties of discontinuous Sturm-Liouville problems with a finite number of transmission conditions," Mediterr. J. Math., 13, No. 1, 153-170 (2016).
14. I. Titeux and Y. Yakubov, "Completeness of root functions for thermal conduction in a strip with piecewise continuous coefficients," Math. Meth. Appl. Sci., 7, No. 7, 1035-1050 (1997).

[^0]: ${ }^{1}$ N. Kemal University, Tekirdağ, Turkey.
 ${ }^{2}$ Gaziantep University, Gaziantep, Turkey.
 ${ }^{3}$ H. Kalyoncu University, Gaziantep, Turkey.

