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In this work, we study a fourthorder boundary value problem with eigenparameter
dependent boundary conditions and transmission conditions at a interior point. A self-adjoint lin-
ear operator A is defined in a suitable Hilbert space H such that the eigenvalues of such a problem
coincide with those of 4. We discuss asymptotic behavior of its eigenvalues and completeness of its
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1. Introduction

It is well-known that many topics in mathematical physics re-
quire the investigation of eigenvalues and eigenfunctions of
Sturm-Liouville type boundary value problems. In recent years,
more and more researches are interested in the discontinuous
Sturm—Liouville problem (see [1-5]). Various physics applica-
tions of this kind problem are found in many literatures, includ-
ing some boundary value problem with transmission conditions
that arise in the theory of heat and mass transfer (see [6,7]). The
literature on such results is voluminous and we refer to [1-9].
Fourth-order discontinuous boundary value problems with
eigen-dependent boundary conditions and with two supple-
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mentary transmission conditions at the point of discontinuity
have been investigated in [10,11]. Note that discontinuous
Sturm—Liouville problems with eigen-dependent boundary
conditions and with four supplementary transmission condi-
tions at the points of discontinuity have been investigated in [3].

In this study, we shall consider a fourth-order differential
equation

Lu := (a(x)u"(x))" + g(x)u(x) = du(x), (L.1)
in I = [-1,0) U (0, 1], with boundary conditions at x = —1

Liu:=u"(-1)=0, (1.2)
Ly :=u(-1)=0, (1.3)

with four transmission conditions at the points of discontinuity
x =0,

Lyu := u(0+) — u(0—) =0, (1.4)
Ly =4 (0+) — 4/ (0-) =0, (L1.5)
Lsu :=u"(04) — u"(0—) + 20,4/(0—) = 0, (1.6)
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Lou :=u"(0+) — u"(0—) + A0,u(0—) =0, (1.7)

and the eigen-dependent boundary conditions at x = 1

Lou = Ju(l) + " (1) = 0, (1.8)
Leu := /(1) +u"(1) = 0, (1.9)

where a(x) =a}, for x€[-1,0),a(x) =d}, for x€(0,1],
a; > 0 and a, > 0 are given real numbers, ¢(x) is a given
real-valued function continuous in [—1,1]; 4 is a complex
eigenvalue parameter; §; and J, are real numbers such that
Lo + 13 #0.

2. Preliminaries

Firstly we define the inner product in L? for every f, g € L*(I)

as
1 /0 1 /!
oh = [ fimdes g [ s
1 J- as Jo

where f(x) = f(x) =100 f2(x) = Jfx) ©.1]- It is easy to see that
(L*(I),[-,"]) is a Hilbert space. Now we define the inner product
in the dlrect sum of spaces L*(I) & C & C & C;, @ Cs, by

[F, G] = (f;g>l + <h1,k1> —+ </’l27k2> =+ </’l3,k3> =+ </’l4,/€4>7

for F:= (f, hy, ho, hs, /’14), G:= (g, ki, kay, ks, k4) S LZ(I) o Cop
C&Cs, ®Cs,. Then Z:= (L’ (N1 ©C S C P Cs, D Cs,, [, 7]) is
the direct sum of modified Krein spaces. A fundamental sym-
metry on the Krein space is given by

[Jo 0 0 0 0 ]
01 0 O 0
J=[10 0 1 0 0 |,
0 0 0 sgnd 0

L0 0 0 0 sgno, |

where Jo: L*(I) — L*() is defined by (Jof) (x) = f(x). We define
a linear operator 4 in Z by the domain of definition

D(A):= {(ﬁlzl,hz,h3,/14) e ZI € AC,.((~1,0)),
) e AC1((0,1)),i=0,3,
Lfe (1), Lif=0,k=1,4,hy =f(1),hy =/ (1)hs = =5,/ (0),hs = —5,/(0) },
=(Lf,=/" (1), =/"(1)./" (04) = /"(0=),/" (0+) =" (0-)),
F=(f,f(1),/(1),—6/(0),—:/(0)) € D(A).

Consequently, the considered problem (1.1)-(1.9) can be
rewritten in operator form as

AF = JF,

i.e., the problem (1.1)—(1.9) can be considered as the eigenvalue
problem for the operator 4. Then, we can write the following
conclusions:

Theorem 2.1. The eigenvalues and eigenfunctions of the problem
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 are defined as the
eigenvalues and the first components of the corresponding
eigenelements of the operator A respectively.

Theorem 2.2. The operator A is self-adjoint in Krein space Z
(cf. Theorem 2.2 of [10]).

3. Fundamental solutions

Lemma 3.1. Let the real-valued function q(x) be continuous in
[—1,1] and f(A)(i = 1,4) are given entire functions. Then for
any A € C the equation

(a(x)u" (x))" + q(x)u(x) = lu(x), x €1,

has a unique solution u = u(x, 1) such that

u(=1) =£1(4),d (=1) = /2(2), u"(=1) = /3(4), " (=1) = fa(4)
(or u(l) = fi(4),u' (1) = fo(2), " (1) = f3(2), /" (1) = fa(4)).

and for each x € [—1,1], u(x, 1) is an entire function of A.

Proof. In terms of existence and uniqueness in ordinary differ-
ential equation theory, we can conclude this conclusion. [

Let ¢(x, 1) be the solution of Eq. (1.1) in [—1,0) which satis-
fies the initial conditions

¢11(_1) = 1a¢/11(_1) = ¢/1/1(_1) = qb,lﬂl(_l) =0

After defining this solution, we may define the solution
¢12(x,4) of Eq. (1.1) in (0,1] by means of the solution
¢11(x, 4) by the initial conditions
¢12(0) = ¢11(0)7¢I12(0) - 45;1(0)7
d)’{;(O) = ‘l’,1//1 (0) = 202p1,(0).

‘Mz(o) = ¢,1/1 (0) - ’151(/)/11(0)7

(3.1)

After defining this solution, we may define the solution
¢21(x,4) of Eq. (1.1) in [—1,0) which satisfies the initial
conditions

G (1) = ¢ (1) =0, ¢5(=1)=~1, ¢ (-1)
=0. (3.2)
After defining this solution, we may define the solution
¢x(x,A) of Eq. (1.1) in (0,1] by means of the solution
¢21(x,2) by the initial conditions
b (O) =y (0)7 d)lzz (O) = ¢/2| (0)7
2(0) = ¢5,(0) — 22005, (0).

/2/2(0) = /2/| (0) *;L(Sld)/n (0)7

(3.3)

Analogically we shall define the solutions y;;(x,2) and
112(x, A)in the intervals [—1,0) and (0, 1] respectively by the ini-
tial conditions

xlz(l):—hx’n(l):xﬁ’z(l) m( ) =4, 111(0) = 712(0),
%1(0) = 71(0), £11(0) = £/,(0 )+7~517’1 0),
711(0) = x115(0) 4 462715(0).

(3.4)

Moreover, we shall define the solutions y,,(x, ) and yz,(x, 4) in
the intervals [—1,0) and (0,1] respectively by the initial
conditions

1 (1)=0,7%(1)==1, 25n(1) =2, 15(1)=0,1(0) = 1(0),
7/21 (0)= Xlzz(o)v 1,2/1 (0)= Xzz (0) +’“51)sz (0),
731(0) = 735(0) + 202155(0).

(3.5)
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Let us consider the Wronskians

du(x,4) du(x,4) x4 za(x,4)
Wy o | P10 Fl0d) o) ()|

G ) B D) 20D ()

G D) B d) e h) (e
and

(%, 4) dn(x,4) (X, 4) x2(x,4)
Wall) = a(x,2)  Pn(x,4) (. 2) 722(X77~)7

(6, 2)  dn(x,d) yh(x, ) g (x,2)

B4 ¢n(xA) 7h(xA) x(x,2)

which are independent of x and entire functions. This sort of cal-
culation gives W(4) = W5(4). Now we may introduce in con-
sideration the characteristic function W(1) as W(1) = Wi(4).

Theorem 3.2. The eigenvalues of the problem 1.1, 1.2, 1.3, 1.4,
1.5, 1.6, 1.7, 1.8, 1.9 are the zeros of the function W(1).

Proof. Let W(1) = 0. Then the functions ¢;(x,4), ¢o1(x,4)
and y;1(x,4), x21(x, ) are linearly dependent, i.e.,

ki (X, 2) + kadpyy (x,4) + ki (x, 4) + kaya (x,4) = 0,

for some k1 #0 or k» #0 or k3 #0 or k4 #0. From this, it fol-
lows that k3y11(x,4) + kay»1(x, 2) satisfies the boundary condi-
tions (1.2) and (1.3). Therefore

{k3111(x, 2) + kaya (x,4), x € [=1,0),
k3xia(x, A) + kagn(x, 2), x € (0,1]

is an eigenfunction of the problem (1.1)—(1.9) corresponding to
eigenvalue /.

Now we let u(x)be any eigenfunction corresponding to
eigenvalue A, but W() # 0. Then the functions ¢y, ¢21, x11» %21
would be linearly independent on (0, 1]. Therefore u(x) may be
represented as

( {C1¢11(xv;-)+C’24’21(x7;¥)+L'3X11(xv;-)+ﬁ’4121(xu}~)7 xe[~1,0);
X)=

CS¢12(X7)V) +cé¢22(xv)‘) + C7X12(x72) +C3X’.’2 (Xv}“)v xXe (07 1]7
where at least one of the constants ¢y, ¢», ¢3, ¢4, ¢5, 6, ¢7 and cg
is not zero. Considering the equations
L,(u(x))=0, v=1,8 (3.6)

as a system of linear equations of the variables ¢y, ¢;, ¢3, ¢4, Cs,
¢e» €7, cg and taking (3.1)—(3.5) into account, it follows that the
determinant of this system is

0 0 Ly, Ligy 0 0 0 0
0 0 Ly, Loy 0 0 0 0
0 0 0 0 Ly, Lidy, O 0
0 0 0 0 Lipy, Ligy, O 0
—$12(0) —$2(0) —112(0) —x2(0) $12(0) $2(0) 712(0) 12(0) :7W(l)3#0
~¢15(0) =% (0) —112(0) —15,(0) $1,(0) ¢5,(0) x1,(0) %2(0)
—¢12(0) —¢5,(0) —112(0) —15,(0) #15(0) $3,(0) x12(0) 25,(0)
—¢12(0) —¢5(0) —x12(0) —15(0) #15(0) ¢3(0) x13(0) 73(0)

Therefore, the system (3.6) has only the trivial solution
¢; = 0(i =1,8). Thus we get a contradiction, which completes
the proof. [

4. Asymptotic formulae for eigenvalues and fundamental
solutions

We start by proving some lemmas.

Lemma 4.1. Let ¢(x,7) be the solution of Eq. (1.1), and let
J=s% s =0+ it. Then the following integral equations hold

for k=0,3in[-1,0)U(0,1]:

& Ld sxkl) | d e et
ﬁd)'](x, ») EWCOS ) +dxk f
@ [ d . s(x—y) s(x-) _se)
q() oy (v, A)dy. (4.1)

& A ) LON & 5 12(0) @3¢50
ﬂtﬁuz(xm): <¢1'2( ) d;g_( )>d kcosa2+<az¢zs( ) ¢ d;ss( ))

d $12(0) a2¢|2( ) @3¢1,(0) @3¢y (0)
Xﬂsmaz ( 4 4s * 452 + 453 )
d $12(0) @¢)(0) B¢}, (0) adh(0)) & o
Xﬂe +< 4 4s a9 4y )dxk"’ :
B[ () e e -
+253 A dxk<sm @ e +e q(») 1o (v, A)dy.
(4.2)
d" @& d sx+1) & d /s see)
2 PO =g g e g g (T )
3 — s(x—y. s(x—y)
+27;3 di(gn (xal y) C(Ul +e (“1 >)
% q(¥) o (v, A)dy. (43)
d* $(0) B¢ (0)\ & sx  (ad)(0) ai¢h(0)
ﬁ¢22(x7ﬂ)*<T‘T>ﬁ°"sg+< 2 27>
d . sx $2(0) ‘12(1’/22(0) a%‘b/z/z(o) a;‘ﬁlz/;(o)
Xﬁs‘“a_ﬁ( 4 TTa TTae T )
d $2(0) azd)/zz(o) agd)/z/z( ) azqﬁ’z’;( ) L
dekez+< 4 4 ag 45 )ﬁ

& [*d [ s(x—y)
+2s3 0 dx* <s1n a

Proof. Regard ¢;;(x, 1) as the solution of the following non-
homogeneous Cauchy problem:

ste=y) _se=p)
—em e @ )q(y)tﬁzz(y,l)dy
(4.4)

—(a(x) /1,1 (x))” +54¢11(x) = q(x) 11 (x, 2),
¢11(—17)») = ]7¢111(_17;“) =0,
1(=1,2) = 0, ¢/)(—1,7) = 0.

Using the method of variation of parameters, ¢;;(x, A) satisfies
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sotl) | _slatl) 252519, (0) X @sdy¢p1,(0) . sx
s(x+1) ea +e @ al = 250l o 50201 ) . SX
d1(x,4) ——cos @ + 7 2—;3 $1o(x,4) 2 + 2 smaz
x . ! 25261¢7,(0) / & s
Cs(x—y) s s , _65 e, l) ( ay _)
x /1 (Sm(Tfe e )q(y)%(y,/u)dy 4 erte
_ ©56:9,,(0) (¢ - %) el
. T 4 253
Then differentiating it with respect to x, we have (4.1). The . srey) s S .
proof for 4.2, 4.3 and 4.4 is similar. O X /o (sinTy en +e @ )q(y)qblz(y,/l)dy

Lemma 4.2. Let ) = 5%, 5 =
totic formulae hold for k ,3:

+ it. Then the following asymp-

d 1 & s(x+1) 1
dxk¢n( )= §ECOS a +Zl
d"' s(t1) sl
X H(e 1 te )
+0(jsf e ) (4.5)
22 / 3
a _ &S 51¢11(0)i X a356:¢1,(0)
AL ) = 3 P
% d Sing_azézéld’n()
dx* T a 4
d s\ @sdrgy(0)
el G R

+0< i ()> (1) (4.6)
= 0(Js] ).

c 2525, aa¢7 0) & .
ﬁd’zz(x:i) == 3 20 dAk cos i+ 0 {»k sing; )

2,25 )/ » X _SX 02
_#%(cw ) wtn0) o (e“z—e )
| ‘k |(r/l\+u7>
+0 e apay . (3)

Each of these asymptotic formulae hold uniformly for x as
|1 - .

j7¢21(x7 )

Proof. Let Fyi(x,4) :ef‘s‘%q’)“(x, A). It is easy to see that
Fui(x,7) is bounded. Therefore ¢, (x, 1) = 0(3“”%1]). Substi-
tuting it into (4.1) and differentiating it with respect to x for

k = 0,3, we obtain (4.5). According to transmission conditions
(1.4)<(1.7) as | )| — oo, we get

¢12(0) = d)ll(o)? ‘f’/n(o) = ¢/11(0)7 /1/2(0)
= *S451¢/11(0): ‘15/1,;(0) = 75452‘1)11(0)

Substituting these asymptotic formulae into (4.2) for £ = 0, we
obtain

(4.7)

Is| ajx+ay
+0|e ajay
ajx+ay

Multiplying through by |s\73eiM< ae >, and denoting

S -(3m2) ,
Fp(x,):=0||s| e d1a(x, 4).

Denoting M: = maxx€[0,|]| Fio(x, /l)| from the last formula, it
follows that
4‘” 4\S| 2sp

/0 q(y)dy + My

for some M, > 0. From this, it follows that M(1) =
|7l = oo, so

bl ) = ( e (“’“3’)).

Substituting this back into the integral on the right side of (4.7)
yields (4.6) for k = 0. The other cases may be considered ana-
logically. O

0(1) as

Similarly one can establish the following lemma. for
)Cll(x’/“)(l = 1)27j = 152)

Lemma 4.3. Let /. = 5%, s = o + it. Then the following asymp-
totic formulae hold for k = 0,3:

& as20,7,,(0) &

sx @ s82y1,(0 & sx
@Xll(x»)'):_ B 2/12(0)

+ TR T gint—
dx" 2 axk " a

22 ! ko
aps 5]%12(0) (ll o —x
+—4 _dxk <et+e 1)

350372(0) & /s i
ﬂwixlz()ik(@,ﬁ)

4 dx
+0< e (2)>
& as d* i s(x—1) alsdy d ;s oo
d;\/lz(’c;) 2 dl\ sm a_2 +—4 w(e 2 —e 2 >

+0<|s|k+l Jsi o )
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‘ @01, (0) & sx
H%zl(«‘f,i):—%ﬁcosa—l
3¢5,
alséz,{zz(O)isinsx
2 dx*

22001, (0) & [ a
+als+22()w<eﬂ+¢fﬁ>

+Mi/(c—,c——>
4 dx"*

aj—ayx
+0( |1\+2 I |< aa; ))

d (x,2) a2t d
A2\ X5 4) = ——
dx*

a

s(x—=1)

3 7 COs o

22 e

+az d ( L <‘I )+O<\ |k+1 fl= = )’
4 gyt

where k =0,3. Each of these asymptotic formulae holds uni-
formly for x.

Theorem 4.4. Let ). = s, s = ¢ + it. Then the characteristic
functions Wi(A)(i = 1,2) have the following asymptotic
Sformula:

g (e
W(2) = Wa(2) = 0 <|'<>>

Proof. Substituting the asymptotic equdlmes —, 21 (—1,2) and
{;’\I_ 71 (—1, ) into the representation of W, (/1) we get

L0y (=1,2) xu(=1,%)
00 1/11(7172') )C/ﬂ( 17)) 510
W, () = 2 (/uzv ,O 7A70,70
L I e s CRCPRO RS ACTAC)
0 0 £i(=1,4) x(=12)
10 cos+ e —eir

0 0 —zsint x(—e-e)

ay ap ay

X 2 2 s s
0 1 —Zcosy (et -ef)
L@
3 — Ea
00 f—lsm— S(—e T —en
7S 3
10 sint e i 4
00 fcosf s{—e @ 4en N
a 15 2l (e
+ o5\ =) ) —o
0 —1 —Ssins s (e fein "
Zsing

00 7ﬁsm7 s3(7efﬁ+eﬁ)

Analogically, we can obtain the asymptotic formulae of
Wy4). O

Corollary 4.5. The real eigenvalues of the problem 1.1, 1.2, 1.3,
1.4, 1.5, 1.6, 1.7, 1.8, 1.9 have a lower bound.

Proof. Putting s*> = i#> (¢ > 0) in the above formulas, it fol-
lows that W(—1*) — oo as t — co. Therefore, W(J)#0 for
negative and sufficiently large in modulus. [

Now we can obtain the asymptotic approximation formu-
lae for the eigenvalues of the considered problem (1.1)—(1.9).
Since the eigenvalues coincide with the zeros of the entire
function W(2), it follows that they have no finite limit. More-

over, we know from Corollary 4.5 that all real eigenvalues are
bounded below. Hence, we may renumber them as
Ao < A1 < <., listed according to their multiplicity.

Theorem 4.6. The ecigenvalues 7, = v ,n=0,1,2,... of the
problem 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 17, 1.8, 1.9 have the
Sfollowing asymptotic formulae for n — oo:

\/7, ain(2n — l)+0 1 7 4;L:,:a27'[(2n+1)+0 1 .
2 n ! 2 n

Proof. By applying the well-known Rouché’s theorem, which
asserts that if f{s)and g(s)are analytic inside and on a closed
contour C, and | g(s) < |f(s)| on C, then f{s)and f(s) + g(s)
have the same number zeros inside C provided that each zero

is counted according to their multiplicity, we can obtain these
conclusions. [

5. Spectrum properties of the operator 4

Theorem 5.1. The residual spectrum of the operator A is empty,
ie., o.(A) =10.

Proof. It sufficies to prove that if y is not an eigenvalue of A4,
then (4 — yI)~" is dense in Z. Therefore we examine the equa-
tion (4 —y)Y = F € Z, where F = (f,f1,/2./3./4).

Since 7y is not an eigenvalue of (1.1)—(1.9), we have

pu(1) + " (1) = fi0,
or
pl (1) + (1) = o740,
or
W'(0+) — " (0—) + 90, (0—) = /70, (5.1)
or
W"(040) — " (0—) + p0,u(0—) = fa0. (5.2)
For convenience, we assume that (5.1) or (5.2) be true.
Consider the initial-value problem
Ly—y=f x€el,
y'(=1) =0,
y(=1) =0,
»(04) = y(0—) =0, (5.3)
¥(04) = y'(0-) =0,
V'(0+) = 3(0=) + 781 (0-) = f3,
Y"(04) = 3"(0=) +70:(0-) = fi.

Let u(x) be the solution of the equation Lu — yu = 0 satisfying
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u(-)=1,d(-1)=0,u"(—1)=—1,u"(—1)=0,
u(04) —u(0—)=0, ' (0+) —/'(0—) =0,
W' (04) =o' (0=) 901 (0=) = f3.4"(0+) =" (0=) +70,u(0~) = fs.

In fact

u(x) = { u (x),

uy(x),

x € [-1,0),

x € (0,1],

where u(x) is the unique solution of the initial-value problem
atul + q(x)uy = yur, x € [<1,0),
u(=1) =1, uj(=1) =0,
uy(—=1) = -1, u/'(-1) =0,

u»(x) is the unique solution of the problem

—a3is! + q(x)uy = yuz, x € (0, 1],
u(0+) —u1(0—) =0
1y (0+) — 14 (0—) =0,
W(0+) = ] (0=) + 90124 (0-) = f3,
! (0+) = u(0=) + 78210 (0-) = fa.
Let
o(x) = {wl(x), x € [-1,0),
my(x), x€(0,1]

be a solution of Lo — yw = f satisfying

o' (-1)=0, o"(-1) =0,

o(0+) —w(0-) =0, o'(0+) — &'(0—) =0,

@' (04) = @"(0-) +9810/(0-) = fs, " (0+) — 0" (0-)
+98,0(0—) = fi.

Then (5.3) has the general solution

0= (o e (54
where d € C.
Since y is not an eigenvalue of (1.1)—(1.9), we have

yur (1) + uy (1)#0 (5.5)
or

yur (1) + 15 (1)#0. (5.6)
The second component of (4 — )Y = F involves the equation
V(1) + (1) = h. (5.7)

Substituting (5.4) into (5.7), we get
d(uy (1) +yus (1)) = h — oy (1) = yan(1).

In view of (5.5), we know that d is a unique solution.
The third component of (4 —7y)Y = F involves the
equation

V() +9'(1) = -k (5.8)
Substituting (5.4) into (5.8), we get
d(u5(1) +yuy(1)) = —k — (1) — e (1).

In view of (5.6), we know that d is a unique solution.
Thus if y is not an eigenvalue of (1.1)—(1.9), d is uniquely
solvable. Hence y is uniquely determined.

The above arguments show that (4 — y/)~! is defined on all
of Z.So y¢a.(A),ie,a/(d) =0. O

Theorem 5.2. If 6; > 0 and 6, > 0, then the operator A has
only real point spectrum, i.e., 6(A) = 6,(4) C R.

Proof. If 6; > 0 and d, > 0, a.e., then Z is a Hilbert space. By
Theorem 2.2, the spectrum of the operator 4 are all real, i.e.,
a(4) C R.

Moreover, if y is not an eigenvalue of 4, then the arguments
of Theorem 5.1 show that (4 — yI)~! is bounded by Theorem
2.2 and the Closed Graph Theorem. Thus y € ,(4). Hence,
a(A) = a)(4). O

Theorem 5.3. If B = JA > 0, then the point spectrum of the
operator A are all real, i.e., o,(4) C R.

Proof. Let A=a+ib € 0,(A),a,b € R and b#0. There exits
F = (£,0,0,0,0) € D(A4) s.t., AF = (a + ib)F. By B > 0, we
have

(BF,F) = [AF, F] = (a + ib){f,f), > 0.
Here (f,f), € R and b# 0. Thus we get a contradiction. [J
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