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In this work, a discontinuous boundary-value problem with retarded argument that contains a spectral parameter in the
transmission conditions at the point of discontinuity is investigated. We obtained asymptotic formulas for the eigenvalues
and eigenfunctions. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Delay differential equations arise in many areas of mathematical modeling: for example, population dynamics (taking into account
the gestation times), infectious diseases (accounting for the incubation periods), physiological and pharmaceutical kinetics (modelling,
for example, the body’s reaction to CO», etc. in circulating blood), and chemical kinetics (such as mixing reactants), the navigational
control of ships and aircraft, and more general control problems.

Boundary value problems for differential equations of the second order with retarded argument were studied in [1-7], and various
physical applications of such problems can be found in [2].

In the papers [6, 7], the asymptotic formulas for the eigenvalues and eigenfunctions of a discontinuous boundary value problem with
retarded argument and a spectral parameter in the boundary conditions were obtained.

The asymptotic formulas for the eigenvalues and eigenfunctions of the Sturm-Liouville problem with the spectral parameter in the
boundary condition were obtained in [8].

The article [9] is devoted to the study of asymptotics of the solutions to the Sturm-Liouville problem with the potential and the
spectral parameter having discontinuity of the first kind in the domain of definition of the solution.

In this paper, we study the eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument and
spectral parameters in the transmission conditions. Namely, we consider the boundary value problem for the differential equation

y () +a()y(x — A(x)) + Ay(x) = 0 (M

on [0, %) U (5, 7] with boundary conditions
y(0) cosa + y'(0) sina = 0, )
y(m)cos B +y'(m)sinB =0, 3)

and transmission conditions

/(5-0)- (3 0) o
y (% —o) — sy (% n o) —0, (5)
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where the real-valued function g(x) is continuous in [0,5) U (%, 7] and has a finite limit g (5 £0) = lim,_, = 10 q(x), the real
valued function A(x) > 0 continuous in [0,%) U (5, 7] and has a finite limit A (3 £0) = lim My 10 AKX, X — A(X) = 0,

ifxe[0,Z);x—A(x) = Z,ifx € (5, 7]; Ais areal spectral parameter; § is an arbitrary real number.
It must be noted that some problems with transmission conditions that arise in mechanics (thermal condition problem for a thin

laminated plate) were studied in [10].
Let wy(x, A) be a solution of Equation (1) on [0, %], satisfying the initial conditions

w1(0,A) = sina, w;(0, 1) = —cosa. (6)

The conditions (6) define a unique solution of Equation (11) on [ ] ([21, p. 12).
After defining the aforementioned solution, we shall define the solutlon wa(x, A) of Equation (1) on [ ] by means of the solution

w1 (x, A) using the initial conditions
T 3 —1/3¢—1 T (T _a=1/3¢—1 1 (T
Wz(z,/\)—)k 8 w1(2,x), w2(2 A) =273 a)1(2,k). )
The conditions (7) are defined as a unique solution of Equation (1) on [% n].
Consequently, the function w(x, 1) is defined on [0, Z) U (%, | by the equality
w1(x, 1), xe|0,Z
Wi ) = [0.3)
wa(x,A), x¢€ (2,71]
is a solution of Equation (1) on [0, Z) U (%, |, which satisfies one of the boundary conditions and both transmission conditions.

Lemma 1
Let w(x, 1) be a solution of Equation (1) and A > 0. Then the following integral equations hold:

. cosuo
w1 (x,A) = sina cos sx — sin sx

X (8)
_ % / (1) sins(x — )wi (r — A(z), A)dt (s =VIA> o) ,

0

wa(x,A) = 2J38 w1 (%A) coss(x—%) +%sins(x—%)

X 9)
1
- / q(7) sins(x — )wa(z — A(z), A)dt (s =VIA> o) .
/2

Proof
To prove this, it is enough to substitute —s2wq (7, 1) — w/(z,A) and —s 2wy(1,A) — Y (z,A) instead of —q(t)wi(t — A(7), 1) and
—q(t)wy(tr — A(7), A) in the integrals (8) and (9), respectively and integrate by parts tW|ce O
Theorem 1

The problem (1)-(5) can have only simple eigenvalues.

Proof
Let A be an eigenvalue of the problem (1)-(5) and

% (x%), xe[03),

y(x 1) = ~
( ) yz(x,k), xe (%, 7]
be a corresponding eigenfunction. Then from Equations (2) and (6), it follows that the determinant

V1 (OI) sino

W[% (OII),M <O,I)] ) iz (0,7) —cosa =0

and by Theorem 2.2.2 in [2], the functionsy; (x,f)f) and wy (X,I) are linearly dependent on [O, %] We can also prove that the functions

V2 (XI) and ws (XI) are linearly dependent on [ 5, 7 |. Hence

¥ (x,}’) = Kiwj (x,i’) (i=1,2) (10)
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for some K1 # 0 and K # 0. We must show that K; = K». Suppose that K1 # K. From equalities (4) and (10), we have
32 -07)- (3 +07) =7 () 5 (5
=i (37) - Vi (37
= ﬁém w3 (%7) — \3/75sz2 (%7)
— V8K — Ko)ws (%’X) —o.

Because §1 (K1 — K) # 0, it follows that

wa (%'X) = 0. (1)
By the same procedure from equality (5), we can derive that
/(T
W) (5,1) =o0. (12)

From the fact that w; (X’)T) is a solution of the differential Equation (1) on [%n] and satisfies the initial conditions (11) and (12),

it follows that wy (x;f) = Oidentically on [ %, ] (cf. [2, p. 12, Theorem 1.2.1]).
By using this, we may also find
7[ o~

From the latter discussions of w; (X,I), it follows that wy (x, A) = 0 identically on [0, 1). But this contradicts (6), thus completing
the proof. O

141 (%,I) = W;

2. An existance theorem

The function w(x, 1) defined in Section 1 is a nontrivial solution of Equation (1) satisfying conditions (2), (4), and (5). Putting w(x, 1) into
Equation (3), we obtain the characteristic equation

F(A) = w(r, M) cos B+ ' (, A)sin B = 0. (13)
By Theorem 1.1, the set of eigenvalues of boundary-value problem (1)-(5) coincides with the set of real roots of Equation (13).
/2 b 4
Letqi = [ |g(v)|drand g = [ |q(v)|dz.
0 /2

Lemma 2

(1) LetA > 4q$. Then for the solution w (x, ) of Equation (8), the following inequality holds:

1
(w1 (x, )] < m\/4qf sina 4 cos2a, xe [Og] (14)
1

(2) LetA > max {4q?,4q3}. Then for the solution w2 (x, 1) of Equation (9), the following inequality holds:
2 3

2
Proof

Let By = maX(o,z] [w1(x, A)|. Then from (8), it follows that, for every A > 0, the following inequality holds:

[wa(x, 1) < 4g? sin*a + cos?a, x € [gn] . (15)

cos2a 1

By < sin o + po) + ;B1AQ1.

If s > 2g1, we obtain Equation (14). Differentiating Equation (8) with respect to x, we have
X
W) (x, ) = —ssin & sin sx — COS & COS SX — / q(t) coss(x — t)wy (t — A(t), A)dr. (16)
0
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From Equations (16) and (14), it follows that, for s > 24, the following inequality holds:..

wh(x, A 1
M < V4q? sin® o + cos? a. 17)
s5/3 3ag
VA4

Let By, = max[%lﬂ] [wa(x, A)|. Then from Equations (9), ( 14), and (17), it follows that, for s > 2g1 and s > 245, the following inequalities

hold:
1
B, < Jagksin2a + cos?a + B2
5
J/4G38 a2
J2
By) < ——=+/4g?sin*a + cos? .
3 q?S
Hence, if 1 > max {4q?,4q3}, we obtain Equation (15). O
Theorem 2

The problem (1)-(5) has an infinite set of positive eigenvalues.

Proof
Differentiating Equation (9) with respect to x, we obtain

X

wh(x, A) = —%/gm (%A) sins( - %) + WQJ;ZZ;L) Coss (x— %) —né g(t) coss(x—t)wa(t — A(r), A)dr. (s =VA> 0). (18)

From Equations (8), (9), (13), (16), and (18), we obtain

T

1
2735 sin o cos 57” - cossoz sin 57” -5 / q(t)sins (% — r) w1(t — A(r), A)dt
s
0
1
X COS 57” ~ 5755 ssina sin 57” + cosa cos 57” + / g(r)coss (% — r) w1(t — A(r),A)dt
0
g
X sin — — " / g(z)sins(wr — 1)wa(t — A(z),A)dt | cos B
/2
T (19)
N 1
+ —? sin o cos sg_cosa sin %r -5 / qg(r)sins (% — r) w1(t — A(), A)dt
0
: 7
X sin 57” - ﬁ ssina sin 57” + cosa cos 57:1+ / g(r)coss (% - r) w1 (t — A(7), M)dt
0
T
s .
X €COS -5~ / g(r) coss(m — 1)wa(t — A(zr),A)dt | sinf =0
%

There are four possible cases as follows:

. sina #0,sin B #0;
. sina #0,sinf =0;
. sine=0,sinB #0;
4, sina =0,sinf =0.

w N =

In this paper, we shall only consider case 1. The other cases may be considered analogically. Let A be sufficiently large. Then, by
Equations (14) and (15), Equation (19) may be rewritten in the form

Jssinsm +0(1) = 0. (20)
Obviously, for large s, Equation (20) has an infinite set of roots. Thus, the theorem is proved. O

. ______________________________________________________________________________________________________|
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3. Asymptotic formulas for eigenvalues and eigenfunctions

Now, we begin to study asymptotic properties of eigenvalues and eigenfunctions. In the following, we shall assume that s is sufficiently
large. From Equations (8) and (14), we obtain

i1 ) =0(1) on o, g] @1
From Equations (9) and (15), we obtain
wr(x, 1) =0(1) on [% n]. (22)

The existence and continuity of the derivatives / (x, 1) for0 <x < Z, |A| < oo, and w5 (x, 1) for Z <x =, |A] < oo follows from
Theorem 1.4.1in [2].

Lemma 3
In case 1
ol (x, ) =0(1), xe [o, %] (23)
wh(x, 1) =0(1), xe [% 7] (24)
hold.
Proof

By differentiating Equation (8) with respect to s, we obtain, by Equation (21),

W;S(X,)k) = —%/q(r) sins(x — r)w;s(r —A(0),A)+Z(x, L), (|Z(x,1)| < Zo). (25)
0

LetD, = maX[o, x|

W;S(x, /\)’. Then the existance of D) follows from continuity of derivation for x € [0, %] From Equation (25)

1
DA < ;(ﬁDA + Zp.
Now let s > 2g;. Then D) < 27, and the validity of the asymptotic formula (23) follows. Formula (24) may be proved analogically. O

Theorem 3
Let n be a natural number. For each sufficiently large n, in case 1, there is exactly one eigenvalue of the problem (1)-(5) near n?.

Proof
We consider the expression that is denoted by O(1) in Equation (20).

COSSTT + ————— sins(wr — 1) + coss(m — 1) | q(t)wy (r — A(z), A)dt
s5/3§ s2/3§

sinasinf | s2/3§ $5/3§

8 sin(a — B) cosacosﬁ /‘[ inpB
0

+/ [COSS p sins(w — 1) 4+ sin B cos s (7w — r)] g(t)wa(r — A (1), 1) dt
%

If formulas (21)-(23) are taken into consideration, it can be shown by differentiation with respect to s that for large s this expression
has bounded derivative. It is obvious that for large s the roots of Equation (20) are situated close to entire numbers. We shall show
that, for large n, onIy one root (20) lies near to each n. We consider the function ¢(s) = ¥/ssinsz + O(1). Its derivative, which has the
form ¢’(s) = 3f ¥/sm cost + O(1), does not vanish for s close to n for sufficiently large n. Thus, our assertion follows by

Rolle’s Theorem. O

Let n be sufficiently large. In what follows, we shall denote by A, = s% the eigenvalue of the problem (1)-(5) situated near n?. We set
sp = n + 8,. From Equation (20), it follows that §, = O ( 1/3) Consequently,

1
sn—n+O( 1/3) (26)

. ______________________________________________________________________________________________________|
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Formula (26) make it possible to obtain asymptotic expressions for eigenfunction of the problem (1)—(5). From Equations (8), (16),
and (21), we obtain

1
w1(x, 1) =sina cossx + O (;) , (27)

w; (x, A) = —ssina sinsx + O(1). (28)

From Equations (9), (22), (27), and (28), we obtain

sina ST b/g sina s big 1
w(x, A) = 735 05 COsS ( E) BT sin— sms( - E) +0 (;)
p=02 of! 29)
wy(x, A) = EYER COS SX + 5)

By substituting Equation (26) into Equations (27) and (29), we find that
. 1
Uipn = wi(X,Ap) =sina cosnx + O (1—/3) ,
= A sin (0] !
Un = wa(x, Ap) = 5n 2/3 cosnx + -
Hence, the eigenfunctions u,(x) have the following asymptotic representation:

smcxcosnx—l—O( 1/3) for xe[0,%),
Un(x) =

82/3cosnx+O( ) for xe(%,7].

Under some additional conditions, the more exact asymptotic formulas that depend upon the retardation may be obtained. Let us
assume that the following conditions are fulfilled:

(i) The derivatives g’(x) and A”(x) exist and are bounded in [0, %) | (%, | and have finite limits ¢’ (3 £0) = lim ¢(x) and
x—Z 0
A" (5 £0) = lim A" (x), respectively.
x—Z£0

(i) A'(x) <1in[0,%) (%, 7right], A(O) =0and lim A(x) =0.
x=>Z+0

By using (ii), we have

b4
Xx—A(X)>0, xe [o, E) (30)
b b
X—A(x)zz,xe(i,n] (31)
From Equations (27), (29), (30), and (31), we have
1
wi(t — A(7),A) =sinacoss(t — A(r)) + O (;) , (32)
wa(t — A(r),A) = 2/38 coss(t — A(r)) + 0 ( ) . (33)
Putting these expressions into Equation (19), we have

s sin(o — B) sinasin

0= — = sina sin B sinsm + Wcossn— ks
7 b (34)

q(7) . q(t) . . 1
X 4 COS ST 5 [cossA(t) + coss(2t — A(r))] dt + sinsxz Ew [sinsA(t) +sins(2t — A(z))]dt ¢ + O 75
0 0

. ______________________________________________________________________________________________________|
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Let

K(x,s,A(7)) = q(t) sinsA(z)dz,

N =

L(x,s, A(1)) = % q(7) cossA(t)dr. (35)

f
/

It is obvious that these functions are bounded for0 <x <m, 0 <s < 4o0.
Under the conditions (i) and (ii), the following formulas

/ g(r)coss(2t — A(r))dt =0 (%) , /q(r) sins(2t — A(r))dt =0 (%) (36)
0 0

can be proved by the same technique in Lemma 3.3.3 in [2]. From Equations (34), (35), and (36), we have
1
sinsw[ssina sin B 4+ K(m,s, A(t)) sina sin B] — cos sw[sina cos B —cosa sin B — L(x,s, A()) sina sin B] + O (;) =0.
Hence,
1 1
tansmt = ;[cot,B —cota — L(m,s,A(x))]+ O (5—2) .
Again if we take s, = n + 8, then
1 1
tan(n + 8p)w =tanpw = ;[cotﬁ —cota —L(m,n, A(z))] + O (n—z) ;

hence for large n,

nmw

8p = i[cotﬂ —cota — L(,n, A(7))]+ O (;—2)
and finally
Sh=n+ L[cotﬂ—cotoz—L(yr,n,A(r))]4—0(%). (37)
nm n

Thus, we have proven the following theorem.

Theorem 4
If conditions (i) and (ii) are satisfied, then the positive eigenvalues A, = 5,2, of the problem (1)-(5) have the asymptotic representation of
Equation (37) for n — oo.

We now may obtain a sharper asymptotic formula for the eigenfunctions. From Equations (8) and (32)

. cos
w1(x,A) = sin o cos sx —

Y insx — sinTa / q(7) sins(x — 7) cos s(t — A(t))dt + O (slz) .
0

Thus, from Equations (35) and (36)

K(x, s, A i 1
w1 (x, 1) = sin o cos sx [1 + x Ss (T))] - smssx [cosa + sinal(x, s, A(z))]+O (S—z) . (38)
Replacing s by s, and using Equation (37), we have
urn(x) = wi(x, An)
(39

nx n2
. ______________________________________________________________________________________________________|
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From Equations (16), (32), and (35), we have

/3 52/3
cos
a 5/3

W; (x,A) _ sinasinsx (1 n K(x, s, A(r)))
* (40)
(cosa+smaL(x s, A(r)))+0( ) X € (0,%].

From Equations (9), (33), (36), (38), and (40), we have

K(Z,s, A in T
wa(x, A) = 2/38 {sin(x cos 5771 |:1 + (2 SS (t))j| — sms 2 [cosa + sinal (%,S,A(r))] +0 (512)§ coss( — %)
K(Z,s, A s
_ % {sinasin 57” |:1 + (2 55 (1')):| B COSS 2 [coso{ + sinal (%,S,A(r))] +0 (512)} sins( — %)

_ % / q(t)sins(x — 1) [S;r/‘s coss(t — A(t)) + O (%)] dr

/2
= j;—:; COS X |:1 + K (%SS A(T))i| - zlsr;;;( (cosa +sinal (%s A(r)))
_ :;r/‘:; / 9 Gins(x— A1) + sins (x— (27 — A(0)))] de +o( )
/2
= ;?30; COS sX [1 + Ks, A(T))] - Z;f;;;( (cosa + sinal(x,s, A(t))) + O (51—2) , XE (%n] .

Now, replacing s by s, and using Equation (37), we have

K(x,n, A(7)) sin nx
e

o
un(x) = %cos nx [1 +

:'2?38 x [(cot B — cota — L(m, n, A(T)))X + (cota + L(x, n, A(r)))n]} +o (,117) . (41)

Thus, we have proven the following theorem.

Theorem 5
If conditions (i) and (ii) are satisfied then, the eigenfunctions up (x) of the problem (1)-(5) have the following asymptotic representation
forn — oo:

uin(x) for xe[0,%)
un(x) =
upm(x) for xe (%, 7],

where uq,(x) and uzp(x) are defined as in Equations (39) and (41), respectively.
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