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In this work, a discontinuous boundary-value problem with retarded argument that contains a spectral parameter in the
transmission conditions at the point of discontinuity is investigated. We obtained asymptotic formulas for the eigenvalues
and eigenfunctions. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Delay differential equations arise in many areas of mathematical modeling: for example, population dynamics (taking into account
the gestation times), infectious diseases (accounting for the incubation periods), physiological and pharmaceutical kinetics (modelling,
for example, the body’s reaction to CO2, etc. in circulating blood), and chemical kinetics (such as mixing reactants), the navigational
control of ships and aircraft, and more general control problems.

Boundary value problems for differential equations of the second order with retarded argument were studied in [1–7], and various
physical applications of such problems can be found in [2].

In the papers [6,7], the asymptotic formulas for the eigenvalues and eigenfunctions of a discontinuous boundary value problem with
retarded argument and a spectral parameter in the boundary conditions were obtained.

The asymptotic formulas for the eigenvalues and eigenfunctions of the Sturm–Liouville problem with the spectral parameter in the
boundary condition were obtained in [8].

The article [9] is devoted to the study of asymptotics of the solutions to the Sturm–Liouville problem with the potential and the
spectral parameter having discontinuity of the first kind in the domain of definition of the solution.

In this paper, we study the eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument and
spectral parameters in the transmission conditions. Namely, we consider the boundary value problem for the differential equation
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where the real-valued function q.x/ is continuous in
�
0, �2

�
[
�
�
2 ,�

�
and has a finite limit q

�
�
2 ˙ 0

�
D limx!�

2 ˙0 q.x/, the real

valued function �.x/ � 0 continuous in
�
0, �2

�
[
�
�
2 ,�

�
and has a finite limit �

�
�
2 ˙ 0

�
D limx!�

2 ˙0 �.x/, x � �.x/ � 0,

if x 2
�
0, �2

�
; x ��.x/� �

2 , if x 2
�
�
2 ,�

�
; � is a real spectral parameter; ı is an arbitrary real number.

It must be noted that some problems with transmission conditions that arise in mechanics (thermal condition problem for a thin
laminated plate) were studied in [10].

Let w1.x,�/ be a solution of Equation (1) on
�
0, �2

�
, satisfying the initial conditions

w1.0,�/D sin˛, w01.0,�/D� cos˛. (6)

The conditions (6) define a unique solution of Equation (11) on
�
0, �2

�
([2], p. 12).

After defining the aforementioned solution, we shall define the solution w2.x,�/ of Equation (1) on
�
�
2 ,�

�
by means of the solution

w1.x,�/ using the initial conditions
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The conditions (7) are defined as a unique solution of Equation (1) on
�
�
2 ,�

�
.

Consequently, the function w.x,�/ is defined on
�
0, �2

�
[
�
�
2 ,�

�
by the equality

w.x,�/D

(
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�
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�
is a solution of Equation (1) on

�
0, �2

�
[
�
�
2 ,�

�
, which satisfies one of the boundary conditions and both transmission conditions.

Lemma 1
Let w.x,�/ be a solution of Equation (1) and � > 0. Then the following integral equations hold:
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Proof
To prove this, it is enough to substitute �s2!1.� ,�/ � !001 .� ,�/ and �s2!2.� ,�/ � !002 .� ,�/ instead of �q.�/!1.� � �.�/,�/ and
�q.�/!2.� ��.�/,�/ in the integrals (8) and (9), respectively and integrate by parts twice. �

Theorem 1
The problem (1)–(5) can have only simple eigenvalues.

Proof
Lete� be an eigenvalue of the problem (1)–(5) and

ey �x,e��D
8<:ey1

�
x,e�� , x 2

�
0, �2

�
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�
be a corresponding eigenfunction. Then from Equations (2) and (6), it follows that the determinant
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and by Theorem 2.2.2 in [2], the functionsey1

�
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�
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�
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�
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�
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�
�
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�
. Hence
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for some K1 ¤ 0 and K2 ¤ 0. We must show that K1 D K2. Suppose that K1 ¤ K2. From equalities (4) and (10), we have
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Because ı1.K1 � K2/¤ 0, it follows that
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2

,e��D 0. (11)

By the same procedure from equality (5), we can derive that

w
0

2

��
2

,e��D 0. (12)

From the fact that w2

�
x,e�� is a solution of the differential Equation (1) on

�
�
2 ,�

�
and satisfies the initial conditions (11) and (12),

it follows that w2

�
x,e��D 0 identically on

�
�
2 ,�

�
(cf. [2, p. 12, Theorem 1.2.1]).

By using this, we may also find

w1

��
2

,e��D w
0

1

��
2

,e��D 0.

From the latter discussions of w2

�
x,e��, it follows that w1

�
x,e�� D 0 identically on

�
0, �2

�
. But this contradicts (6), thus completing

the proof. �

2. An existance theorem

The function!.x,�/ defined in Section 1 is a nontrivial solution of Equation (1) satisfying conditions (2), (4), and (5). Putting!.x,�/ into
Equation (3), we obtain the characteristic equation

F.�/� !.� , �/ cosˇC!0.� , �/ sinˇ D 0. (13)

By Theorem 1.1, the set of eigenvalues of boundary-value problem (1)–(5) coincides with the set of real roots of Equation (13).

Let q1 D
�=2R
0
jq.�/jd� and q2 D

�R
�=2

jq.�/jd� .

Lemma 2

(1) Let �� 4q2
1. Then for the solution w1.x,�/ of Equation (8), the following inequality holds:

jw1.x,�/j �
1

jq1j

q
4q2

1 sin2 ˛C cos2 ˛, x 2
h

0,
�

2

i
. (14)

(2) Let ��max
˚

4q2
1, 4q2

2

�
. Then for the solution w2.x,�/ of Equation (9), the following inequality holds:

jw2.x,�/j �
2 3
p
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3
q

q5
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q
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1 sin2 ˛C cos2 ˛, x 2
h�

2
,�
i

. (15)

Proof
Let B1� DmaxŒ0,�2 �

jw1.x,�/j. Then from (8), it follows that, for every � > 0, the following inequality holds:

B1� �

s
sin2 ˛C

cos2 ˛

s2
C

1

s
B1�q1.

If s� 2q1, we obtain Equation (14). Differentiating Equation (8) with respect to x, we have

w01.x,�/D�s sin˛ sin sx � cos˛ cos sx �

xZ
0

q.�/ cos s.x � �/w1.� ��.�/,�/d� . (16)1
5

1
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From Equations (16) and (14), it follows that, for s� 2q1, the following inequality holds:.ˇ̌
w01.x,�/

ˇ̌
s5=3

�
1

3
q

4q5
1

q
4q2

1 sin2 ˛C cos2 ˛. (17)

Let B2� DmaxŒ�2 ,�� jw2.x,�/j. Then from Equations (9), ( 14), and (17), it follows that, for s� 2q1 and s� 2q2, the following inequalities

hold:
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Hence, if ��max
˚

4q2
1, 4q2

2

�
, we obtain Equation (15). �

Theorem 2
The problem (1)–(5) has an infinite set of positive eigenvalues.

Proof
Differentiating Equation (9) with respect to x, we obtain
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3
p

s

ı
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2

,�
�
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�

x �
�

2

�
C

w01
�
�
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�
3
p

s2ı
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�
x �

�

2

�
�

xZ
�=2

q.�/ cos s.x��/w2.���.�/,�/d� .
�

sD
p
�,� > 0

�
. (18)

From Equations (8), (9), (13), (16), and (18), we obtain264 1

s2=3ı

0B@sin˛ cos
s�

2
�
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s
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s�

2
�

1

s

�
2Z

0
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��

2
� �

�
!1.� ��.�/,�/d�
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s�

2
�

1
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s�

2
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s�

2
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�
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�
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q.�/ sin s.� � �/!2.� ��.�/,�/d�
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p

s

ı

0B@sin˛ cos
s�

2
�

cos˛

s
sin

s�

2
�

1

s

�
2Z

0

q.�/ sin s
��

2
� �

�
!1.� ��.�/,�/d�
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1
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0B@s sin˛ sin
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� �
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!1.� ��.�/,�/d�
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q.�/ cos s.� � �/!2.� ��.�/,�/d�

375 sinˇ D 0

(19)

There are four possible cases as follows:

1. sin˛ ¤ 0, sinˇ ¤ 0;
2. sin˛ ¤ 0, sinˇ D 0;
3. sin˛ D 0, sinˇ ¤ 0;
4. sin˛ D 0, sinˇ D 0.

In this paper, we shall only consider case 1. The other cases may be considered analogically. Let � be sufficiently large. Then, by
Equations (14) and (15), Equation (19) may be rewritten in the form

3
p

s sin s� CO.1/D 0. (20)

Obviously, for large s, Equation (20) has an infinite set of roots. Thus, the theorem is proved. �
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3. Asymptotic formulas for eigenvalues and eigenfunctions

Now, we begin to study asymptotic properties of eigenvalues and eigenfunctions. In the following, we shall assume that s is sufficiently
large. From Equations (8) and (14), we obtain

!1.x, �/D O.1/ on
h

0,
�

2

i
. (21)

From Equations (9) and (15), we obtain

!2.x, �/D O.1/ on
h�

2
, �
i

. (22)

The existence and continuity of the derivatives !01s.x, �/ for 0 � x � �
2 , j�j <1, and !02s.x, �/ for �2 � x � � , j�j <1 follows from

Theorem 1.4.1 in [2].

Lemma 3
In case 1

!01s.x, �/D O.1/, x 2
h

0,
�

2

i
, (23)

!02s.x, �/D O.1/, x 2
h�

2
, �
i

(24)

hold.

Proof
By differentiating Equation (8) with respect to s, we obtain, by Equation (21),

w
0

1s.x,�/D�
1

s

xZ
0

q.�/ sin s.x � �/w
0

1s.� ��.�/,�/C Z.x,�/, .jZ.x,�/j � Z0/. (25)

Let D� DmaxŒ0,�2 �

ˇ̌̌
w
0

1s.x,�/
ˇ̌̌
. Then the existance of D� follows from continuity of derivation for x 2

�
0, �2

�
. From Equation (25)

D� �
1

s
q1D�C Z0.

Now let s� 2q1. Then D� � 2Z0 and the validity of the asymptotic formula (23) follows. Formula (24) may be proved analogically. �

Theorem 3
Let n be a natural number. For each sufficiently large n, in case 1, there is exactly one eigenvalue of the problem (1)–(5) near n2.

Proof
We consider the expression that is denoted by O.1/ in Equation (20).

ı

sin˛ sinˇ

8̂<̂
:� sin.˛ � ˇ/

s2=3ı
cos s� C

cos˛ cosˇ

s5=3ı
sin s� C

�
2Z

0

	
cosˇ

s5=3ı
sin s.� � �/C

sinˇ

s2=3ı
cos s.� � �/



q.�/w1.� ��.�/,�/d�

C

�Z
�
2

	
cosˇ

s
sin s.� � �/C sinˇ cos s .� � �/



q.�/w2.� ��.�/,�/d�

9>=>;
If formulas (21)–(23) are taken into consideration, it can be shown by differentiation with respect to s that for large s this expression
has bounded derivative. It is obvious that for large s the roots of Equation (20) are situated close to entire numbers. We shall show
that, for large n, only one root (20) lies near to each n. We consider the function �.s/ D 3

p
s sin s� C O.1/. Its derivative, which has the

form �0.s/ D 1

3
3p

s2
sin s� C 3

p
s� cos� C O.1/, does not vanish for s close to n for sufficiently large n. Thus, our assertion follows by

Rolle’s Theorem. �

Let n be sufficiently large. In what follows, we shall denote by �n D s2
n the eigenvalue of the problem (1)–(5) situated near n2. We set

sn D nC ın. From Equation (20), it follows that ın D O
�

1
n1=3

�
. Consequently,

sn D nCO

�
1

n1=3

�
. (26)1

5
1

6
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Formula (26) make it possible to obtain asymptotic expressions for eigenfunction of the problem (1)–(5). From Equations (8), (16),
and (21), we obtain

!1.x, �/D sin˛ cos sxCO

�
1

s

�
, (27)

!
0

1.x, �/D�s sin˛ sin sxCO.1/. (28)

From Equations (9), (22), (27), and (28), we obtain

!2.x, �/D
sin˛

s2=3ı
cos

s�

2
cos s

�
x �

�

2

�
�

sin˛

s2=3ı
sin

s�

2
sin s

�
x �

�

2

�
CO

�
1

s

�

!2.x, �/D
sin˛

s2=3ı
cos sxCO

�
1

s

�
. (29)

By substituting Equation (26) into Equations (27) and (29), we find that

u1n D w1.x,�n/D sin˛ cos nxCO

�
1

n1=3

�
,

u2n D w2.x,�n/D
sin˛

ın2=3
cos nxCO

�
1

n

�
.

Hence, the eigenfunctions un.x/ have the following asymptotic representation:

un.x/D

8̂<̂
:

sin˛ cos nxCO
�

1
n1=3

�
, for x 2

�
0, �2

�
,

sin˛
ın2=3 cos nxCO

� 1
n

�
for x 2

�
�
2 ,�

�
.

Under some additional conditions, the more exact asymptotic formulas that depend upon the retardation may be obtained. Let us
assume that the following conditions are fulfilled:

(i) The derivatives q0.x/ and �00.x/ exist and are bounded in
�
0, �2

�S �
�
2 ,�

�
and have finite limits q0

�
�
2 ˙ 0

�
D lim

x!�
2 ˙0

q0.x/ and

�00
�
�
2 ˙ 0

�
D lim

x!�
2 ˙0

�00.x/, respectively.

(ii) �0.x/� 1 in
�
0, �2

�S �
�
2 ,�right

�
,�.0/D 0 and lim

x!�
2 C0

�.x/D 0.

By using (ii), we have

x ��.x/� 0, x 2
h

0,
�

2

�
(30)

x ��.x/�
�

2
, x 2

��
2

,�
i

(31)

From Equations (27), (29), (30), and (31), we have

w1.� ��.�/,�/D sin˛ cos s.� ��.�//CO

�
1

s

�
, (32)

w2.� ��.�/,�/D
sin˛

s2=3ı
cos s.� ��.�//CO

�
1

s

�
. (33)

Putting these expressions into Equation (19), we have

0D �
s1=3

ı
sin˛ sinˇ sin s� C

sin.˛ � ˇ/

s2=3ı
cos s� �

sin˛ sinˇ

s2=3ı

�

8<:cos s�

�Z
0

q.�/

2
Œcos s�.�/C cos s.2� ��.�//�d� C sin s�

�Z
0

q.�/

2
Œsin s�.�/C sin s.2� ��.�//�d�

9=;CO

�
1

s5=3

�
.

(34)
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Let

K.x, s,�.�//D
1

2

xZ
0

q.�/ sin s�.�/d� ,

L.x, s,�.�//D
1

2

xZ
0

q.�/ cos s�.�/d� . (35)

It is obvious that these functions are bounded for 0� x � � , 0< s <C1.
Under the conditions (i) and (ii), the following formulas

xZ
0

q.�/ cos s.2� ��.�//d� D O

�
1

s

�
,

xZ
0

q.�/ sin s.2� ��.�//d� D O

�
1

s

�
(36)

can be proved by the same technique in Lemma 3.3.3 in [2]. From Equations (34), (35), and (36), we have

sin s�Œs sin˛ sinˇC K.� , s,�.�// sin˛ sinˇ�� cos s�Œsin˛ cosˇ � cos˛ sinˇ � L.� , s,�.�// sin˛ sinˇ�CO

�
1

s

�
D 0.

Hence,

tan s� D
1

s
Œcotˇ � cot˛ � L.� , s,�.�//�CO

�
1

s2

�
.

Again if we take sn D nC ın, then

tan.nC ın/� D tan ın� D
1

n
Œcotˇ � cot˛ � L.� , n,�.�//�CO

�
1

n2

�
;

hence for large n,

ın D
1

n�
Œcotˇ � cot˛ � L.� , n,�.�//�CO

�
1

n2

�
and finally

sn D nC
1

n�
Œcotˇ � cot˛ � L.� , n,�.�//�CO

�
1

n2

�
. (37)

Thus, we have proven the following theorem.

Theorem 4
If conditions (i) and (ii) are satisfied, then the positive eigenvalues �n D s2

n of the problem (1)–(5) have the asymptotic representation of
Equation (37) for n!1.

We now may obtain a sharper asymptotic formula for the eigenfunctions. From Equations (8) and (32)

w1.x,�/D sin˛ cos sx �
cos˛

s
sin sx �

sin˛

s

xZ
0

q.�/ sin s.x � �/ cos s.� ��.�//d� CO

�
1

s2

�
.

Thus, from Equations (35) and (36)

w1.x,�/D sin˛ cos sx

	
1C

K.x, s, �.�//

s



�

sin sx

s
Œcos˛C sin˛L.x, s, �.�//�CO

�
1

s2

�
. (38)

Replacing s by sn and using Equation (37), we have

u1n.x/D w1.x,�n/

D sin˛



cos nx

	
1C

K.x, n,�.�//

n



�

sin nx

n�
Œ.cotˇ � cot˛ � L.� , n,�.�///xC .cot˛C L.x, n,�.�///��

�
CO

�
1

n2

�
.

(39)

1
5

1
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From Equations (16), (32), and (35), we have

w
0

1.x,�/

s5=3
D�

sin˛ sin sx

s2=3

�
1C

K.x, s, �.�//

s

�
�

cos sx

s5=3
.cos˛C sin˛L.x, s, �.�///CO

�
1

s2

�
, x 2

�
0,
�

2

i
.

(40)

From Equations (9), (33), (36), (38), and (40), we have

w2.x,�/D
1

s2=3ı

(
sin˛ cos

s�

2

"
1C

K
�
�
2 , s,�.�/

�
s

#
�

sin s�
2

s

h
cos˛C sin˛L

��
2

, s,�.�/
�i
CO

�
1

s2

�)
cos s

�
x �

�

2

�

�
1

ı

(
sin˛ sin

s�

2

"
1C

K
�
�
2 , s,�.�/

�
s

#
�

cos s�
2

s

h
cos˛C sin˛L

��
2

, s,�.�/
�i
CO

�
1

s2

�)
sin s

�
x �

�

2

�

�
1

s

xZ
�=2

q.�/ sin s.x � �/

	
sin˛

s2=3ı
cos s.� ��.�//CO

�
1

s

�

d�

D
sin˛

s2=3ı
cos sx

"
1C

K
�
�
2 , s,�.�/

�
s

#
�

sin sx

s5=3ı

�
cos˛C sin˛L

��
2

, s,�.�/
��

�
sin˛

s5=3ı

xZ
�=2

q .�/

2
Œsin s.x ��.�//C sin s .x � .2� ��.�///�d� CO

�
1

s2

�

D
sin˛

s2=3ı
cos sx

	
1C

K.x, s,�.�//

s



�

sin sx

s5=3ı
.cos˛C sin˛L.x, s,�.�///CO

�
1

s2

�
, x 2

��
2

,�
i

.

Now, replacing s by sn and using Equation (37), we have

u2n.x/D
sin˛

n2=3ı



cos nx

	
1C

K.x, n,�.�//

n



�

sin nx

n5=3�
� Œ.cotˇ � cot˛ � L.� , n,�.�///xC .cot˛C L.x, n,�.�///��

�
CO

�
1

n2

�
. (41)

Thus, we have proven the following theorem.

Theorem 5
If conditions (i) and (ii) are satisfied then, the eigenfunctions un.x/ of the problem (1)–(5) have the following asymptotic representation
for n!1:

un.x/D

8<:
u1n.x/ for x 2

�
0, �2

�
u2n.x/ for x 2

�
�
2 ,�

�
,

where u1n.x/ and u2n.x/ are defined as in Equations (39) and (41), respectively.
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