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Namık Kemal University, Mathematics Department, Değirmenaltı Campus, Tekirdağ, TÜRKİYE(TURKEY)
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Abstract. This work focuses on the development of a multivariate function approximating method by using quartic Transfor-
mational High Dimensional Model Representation (THDMR). The method uses the target function’s image under a quartic
transformation for High Dimensional Model Representation(HDMR) instead of the function’s itself.
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INTRODUCTION

Various HDMR versions were suggested in order to tackle with different problem types encountered. Factorized

HDMR is one of them. The main problem with FHDMR is that unlike additivity measures of HDMR, multiplicativity

measures of FHDMR is not well ordered. This led to the idea of logarithmic HDMR. The main idea behind Logarithmic

HDMR was to initially transform what is basically a function of multiplicative nature to one that is of additive nature.

This would enable us to expand the transformed problem using plain HDMR and then transform back the individual

terms. Previous works were focused on the HDMR constancy optimization under an affine transformation[1, 2] and a

conic transformation[3]. We shall consider in this work a quartic transformation and attempt to find optimal parameters

for such a transformation leading to a new approximation.

TRANSFORMATIONAL HIGH DIMENSIONAL MODEL REPRESENTATION

Let us consider a function f (x1, ...,xN) of N independent variables x1,x2, ...,xN which has a non-additive structure. A

transformation T can be chosen which yields a new multivariate function ϕ j (x1, ...,xN).

T f (x1, ...,xN) = ϕ (x1, ...,xN) (1)

If we apply the HDMR expansion to ϕ we will get ϕ (x1, ...,xN) = ϕ0 +
N

∑
β=1

ϕβ

(

xβ

)

+ · · ·+ ϕ1...N (x1, ...,xN).

Additivity measurers σ1 (ϕ)s can be defined for this expansion in the usual HDMR manner.

σ0 (ϕ) =
‖ϕ0‖2

‖ϕ‖2
, σ1 (ϕ) = σ0 (ϕ)+

N

∑
β1=1

∥

∥ϕβ1

∥

∥

2

‖ϕ‖2
, σ2 (ϕ) = σ1 (ϕ)+

N

∑
β1,β2=1

β1<β2

∥

∥ϕβ1,β2

∥

∥

2

‖ϕ‖2
, · · · (2)

These measures will be different from those obtained by applying HDMR expansion to the original function f .

Obviously the difference will be dependent on the specific choice of the transformation T . Since the basic philosophy

of HDMR is to be able to represent the function with as few and as less variate terms as possible, we would prefer σ0

and σ1 to be as close to 1 as possible. In this study we choose to deal only with σ0 and attempt to maximize it.
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QUARTIC TRANSFORMATIONAL HIGH DIMENSIONAL MODEL

REPRESENTATION

A polynomial can be used as THDMRâĂŹs operator for choosing the transformation suggested in (1). Here the degree

of the polynomial will be taken to be four. The linear combination coefficients of the quartic will be assumed to

vary with independent variables. They will be regarded as operators dependent on the algebraic operators each of

which multiplies its operand with a different independent variable. This gives flexibility to the relevant transformation

and they can be selected so as to approximate the HDMR expansion optimally. Since only σ0 (ϕ) will be under

consideration, ϕ will be approximated by the constant component ϕ0

T f (x1, ...,xN) = ϕ (x1, ...,xN) = a0 (x1, ...,xN)+a1 (x1, ...,xN) f + · · ·+a4 (x1, ...,xN) f 4 = ϕ0

which gives the approximate equality

f1 =
a3

4a4
− 1
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+
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{
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√
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√
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






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





(3)

where

p = a2
2 −3a3a1 +12a4 (a0 −ϕ0) ,

q = 2a3
2 −9a3a2a1 +27a4a2

1 +27a2
3 (a0 −ϕ0)−72a4a2 (a0 −ϕ0) .

In this work we will consider only f1. The other roots may be considered analogically. The aim here is to find

convenient forms for a0, a1, a2, a3 and a4 that maximize σ0 in (3). To this end a0, a1, a2, a3 and a4 will be taken

in L2 class. Hence orthonormal basis of the Hilbert space H(N) will be taken into consideration. Orthonormality will

be defined (u j,uk) =
∫

V dVW (x1, ...,xN)u j (x1, ...,xN)uk (x1, ...,xN) = δ jk, 1 ≤ j,k ≤ ∞; where V = [a1,b1 ]×·· ·×
[aN ,bN ] represents the hyperprism which is the HDMR construction domain and W (x1, ...,xN) the multiplicative

weight function used in HDMR. The individual weight functions will be chosen as constants, normalized over the

corresponding domain and dV is the product of individual differentials dx1...dxN .

Although the basis mentioned above has an infinite number of elements, in practice a finite number of elements will

be taken into consideration. Therefore ϕ can be expressed as

ϕ (x1, ...,xN) =
m

∑
j=2

a
(0)
j u j

(

n

∑
k=1

a
(1)
k uk

)

f +

(

p

∑
l=1

a
(2)
l ul

)

f 2 +

(

t

∑
s=1

a
(3)
s us

)

f 3 +

(

z

∑
v=1

a
(4)
v uv

)

f 4 (4)

To obtain the constant HDMR term ϕ0 both sides of (4) are to be integrated with respect to x1,...,xN over V under the

weight function W . We define vectors η and µ . The elements of vector µ are defined as

µ
(0)
j =

∫

V
dV

(

N

∏
β=1

Wβ

(

xβ

)

)

u j = (u j,h) , µ
(1)
k =

∫

V
dV

(

N

∏
β=1

Wβ

(

xβ

)

)

u j = (u j,h) ...etc

h(x1, ...,xN) appearing in the first inner product is a function which has the constant value 1 for all xβ in the first inner

product is a function which has the constant value 1 for all xβ s in the hyperprism domain [a1,b1 ]×·· ·× [aN ,bN ]. ϕ0
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can now be written as inner product ϕ0 = ηT µ . Since ϕ0 has a constant value, the square of its norm will be equal to

the square of the function ϕ0. ‖ϕ0‖2 = |ηµ |2 = ηT µµT η . ‖ϕ‖2
on the other hand can be expressed in terms of the

above defined vector η and a square matrix A which can be expressed in terms of its blocks as

A ≡













K L N S B

LT M P T C

NT PT R Y D

ST TT YT Z F

BT CT DT FT G













K jk ≡ (u j,uk) , 2 ≤ j,k ≤ m, L jk ≡ (u j, f uk) , 2 ≤ j ≤ m, 1 ≤ k ≤ n, M jk ≡
(

u j, f 2uk

)

, 1 ≤ j,k ≤ n,

N jk ≡
(

u j, f 2uk

)

, 2 ≤ j ≤ m, 1 ≤ k ≤ p, Pjk ≡
(

u j, f 3uk

)

, 1 ≤ j ≤ n, 1 ≤ k ≤ p,

R jk ≡
(

u j, f 4uk

)

, 1 ≤ j,k ≤ p, S jk ≡
(

u j, f 3uk

)

, 2 ≤ j ≤ m, 1 ≤ k ≤ t,

Tjk ≡
(

u j, f 4uk

)

, 1 ≤ j ≤ n, 1 ≤ k ≤ t, Yjk ≡
(

u j, f 5uk

)

, 1 ≤ j ≤ p, 1 ≤ k ≤ t, Z jk ≡
(

u j, f 6uk

)

, 1 ≤ j,k ≤ t,

B jk ≡
(

u j, f 4uk

)

, 2 ≤ j ≤ m,1 ≤ k ≤ z, C jk ≡
(

u j, f 5uk

)

, 1 ≤ j ≤ n, 1 ≤ k ≤ z,

D jk ≡
(

u j, f 6uk

)

, 1 ≤ j ≤ p, 1 ≤ k ≤ z, Fjk ≡
(

u j, f 7uk

)

, 1 ≤ j ≤ t, 1 ≤ k ≤ z, G jk ≡
(

u j, f 8uk

)

, 1 ≤ j,k ≤ z,

A is a symmetric, positive definite matrix. Norm square of ϕ can be expressed in terms of A and η as ‖ϕ‖2 = ηT Aη .

So the constancy measurer σ0 becomes σ0 = ηT µµT η/ηAη . Our aim is to maximize σ0 which can be written

as a Rayleigh quotient as
(

yT A−1/2µµT A−1/2y
)

/(yT y) where y ≡ A1/2η . However, a Rayleigh quotient takes its

maximum value at the maximum eigenvalue of its kernel, in this case A−1/2µµT A−1/2. Similarly y is the eigenvector

corresponding to the maximum eigenvalue. An analysis of the kernel will give the maximum eigenvalue and the

corresponding eigenvector of it. They are respectively, σ0 = µT A−1µ , y = A−1/2µ . The equation for y gives us the

vector η that maximizes σ0 as η = A−1/2y = A−1µ . Utilizing these equalities we can construct a function for ϕ0.

To complete this we can express ϕ0, a0, a1, a2, a3, and a4 in terms of matrix algebraic entities. ϕ0 can be written

in compact form as ϕ0 = ηT µ = µT A−1µ . We define a vector ξ with ξ = [ξ2 ...ξm ξ1 ...ξp ξ1 ...ξt ξ1 ...ξz ]
T

and

express a0, a1, a2, a3, and a4 more compactly as a0 = η(0)T
ξ (0), a1 = η(1)T

ξ (1), a2 = η(2)T
ξ (2), a3 = η(3)T

ξ (3),

a4 = η(3)T
ξ (4).

Here the vectors η(0), η(1), η(2), η(3), η(4) and ξ (0), ξ (1), ξ (2), ξ (3), ξ (4) are explicitly defined as

η(0) =
[

a
(0)
2 ... a

(0)
m

]T
, ...,η(4) =

[

a
(4)
1 ... a

(4)
z

]T
; ξ (0) = [ξ2 ... ξm ]T , ...,ξ (4) = [ξ1 ... ξz ]

T
;

To proceed we define (m+n+ p+ t + z−1)× (m+n+ p+ t + z−1) projection matrices P1, P2, P3 and P4 as

P1 =
m−1

∑
β=1

eβ eT
β , P2 =

m+n−1

∑
β=1

eβ eT
β , P3 =

m+n+p−1

∑
β=1

eβ eT
β , P4 =

m+n+p+t−1

∑
β=1

eβ eT
β .

Now these substitutions may be introduced into (3) to obtain

f1 ≈−
√

χ

4
− 1

2

√

χ

4
− γ +ψ +κ − 1

2

√

√

√

√

√

√

χ

2
−2γ −ψ −κ +

χ3/2 − 4a2
√

χ−8µT A−1P2ξ

[µT A−1(I−P1−P2−P3−P4)ξ ]

4

√

χ
4
− γ +ψ +κ

where

p=
[

µT A−1P3ξ
]2 −3µT A−1P4ξ µT A−1P2ξ +12µT (I−P1 −P2 −P3 −P4)ξ

(

µT A−1P1ξ −µT A−1µ
)

,

q=2
[

µT A−1P3ξ
]3 −9µT A−1P4ξ µT A−1P3ξ µT A−1P2ξ +27µT (I−P1 −P2 −P3 −P4)ξ

[

µT A−1P2ξ
]2
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+27
[

µT A−1P4ξ
]2 (

µT A−1P1ξ −µT A−1µ
)

−72µT (I−P1 −P2 −P3 −P4)ξ µT A−1P3ξ

×
(

µT A−1P1ξ −µT A−1µ
)

χ=

[

µT A−1P3ξ
]2

[µT (I−P1 −P2 −P3 −P4)ξ ]2
, κ =

{

q+
√

−4p3 +q2
}1/3

21/3µT (I−P1 −P2 −P3 −P4)ξ

ψ=
21/3 p

3µT (I−P1 −P2 −P3 −P4)ξ
{

q+
√

−4p3 +q2
}1/3

, γ =
2µT A−1P3ξ

3µT (I−P1 −P2 −P3 −P4)ξ

To simplify expression we can use a spectral decomposition of A−1. A good approximation will be to use to minimal

eigenpairs of A as A−1 = λ−1
minϕminϕT

min.

CONCLUSION

In this study we inserted certain flexibilities into the approximation. Because we want to improve its quality. Hence

we applied HDMR on the image of the original function under a fourth degree transformation. The coefficients of

the transformation are chosen to make the error of HDMR approximation as small as possible and this increases the

efficiency of the method.

REFERENCES
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