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Abstract

Whereas it is easy to reduce the translational symmetry of a molecular

system using, e.g., Jacobi coordinates, the situation is much more involved

for rotational symmetry. In this paper, we address the latter problem

using holonomy reduction. We suggest that the configuration space may be

considered as the reduced holonomy bundle with a connection induced by the

mechanical connection. Using the fact that for the special case of the three-body

problem the holonomy group is SO(2) (as opposed to SO(3) like in systems

with more than three bodies), we obtain a holonomy-reduced configuration

space of topology R3+ × S1. The dynamics then takes place on the cotangent

bundle over the holonomy-reduced configuration space. On this phase space,

there is an S1 symmetry action coming from the conserved reduced angular

momentum which can be reduced using the standard symplectic reduction

method. Using a theorem by Arnold it follows that the resulting symmetry-

reduced phase space is again a natural mechanical phase space, i.e. a cotangent

bundle. This is different from what is obtained from the usual approach where

symplectic reduction is used from the outset. This difference is discussed

in some detail, and a connection between the reduced dynamics of a triatomic

molecule and the motion of a charged particle in a magnetic field is established.

PACS numbers: 45.50.Jf, 02.40.−k, 45.20.Jj

Mathematics Subject Classification: 70F07, 70G65, 53C80

1. Introduction

In molecular dynamics, which is the subject of this paper, and generally in dynamical systems

theory, the reduction of the number of degrees of freedoms is of central importance for both

computational and conceptual reasons. A molecular system is a many body system consisting

of the nuclei and electrons of the constituting atoms. The electronic degrees of freedom are
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typically dealt with in a Born–Oppenheimer approximation. Since the nuclearmasses are a few

thousands times bigger than the mass of an electron, one assumes that the nuclei adiabatically

interact via the forces obtained from a potential energy surface that is obtained from the

electronic ground state energy as a function of the nuclear configurations. The computation of

such potential energy surfaces is based on density functional theory and other methods and is

an art in physical chemistry. For several molecular systems, such potential energy surfaces are

tabulated in the chemistry literature. Given such a potential energy surface, a molecular system

reduces to an N-body system which only involves the degrees of freedom of the N nuclei in

the system. This N-body system can then be treated classically or quantum mechanically. In

particular, for light atoms (respectively nuclei) like hydrogen, quantum effects might play an

important role which make a quantum mechanical treatment necessary. We note that state

of the art quantum computations for, e.g., reactive scattering are even today only feasible

for three or maximally four atoms. For this reason and also conceptual reasons one desires

to get rid of as many degrees as possible. A reduction of the number of ‘effective’ degrees

of freedom of a molecular N-body system can be achieved by exploiting the symmetries of

the system. These symmetries consist of overall translations and rotations. The reduction of

translational degrees of freedom is simple and can be achieved using Jacobi coordinates or

changing to a centre of mass coordinate system. For rotations, the situation is much more

involved as a clear distinction between rotational degrees of freedom and (internal) vibrational

degrees of freedom only exists in an approximate sense in the vicinity of an equilibrium

position. Here, the distinction between vibrations and rotations can be achieved from the so-

called Eckart frame [1] that is widely used in applications [2]. This approximation is however

only of local validity since large amplitude vibrations may produce rotations. A major step

towards a geometric understanding of why a separation of rotations and vibrations cannot be

achieved globally goes back to the work of Guichardet [3], who used the differential geometry

framework of principal bundles to give a mathematically rigorous definition of vibrational

motions. He showed that the translation-reduced configuration space is a principal bundle

with the structure group given by the special orthogonal group, and introduced a connection

which naturally relates to molecular motions. The inseparability of rotations and vibrations

then follows from the nonvanishing curvature of this so-called mechanical connection. Iwai

and Tachibana [4, 5] used Guichardet’s approach to study in great detail both the classical and

quantum mechanical dynamics of N-body molecular systems. Using the setting of principal

bundles, Iwai [6] in particular showed that the Eckart frame can also be defined for general

configurations (i.e. no necessarily equilibrium configurations) of a molecule. However, this

frame is then not unique and therefore not suitable for studying large amplitude vibrational

motions of a molecule. Iwai moreover applied the Marsden–Weinstein–Meyer symplectic

reduction procedure [7, 8] to reduce the constant angular momentum motion of an N-body

system. He showed that for nonvanishing angular momentum, the reduced phase space is

then no longer a natural mechanical system in the sense that it is no longer given as the

cotangent bundle over a (reduced) configuration space. A gauge theoretical interpretation of

the reduction of symmetries and the related choice of a reference frame in N-body systems

was introduced in [9, 10]. In their constructive and instructive paper, Littlejohn and Reinsch

[10] used a gauge-invariant method instead of the symplectic reduction mentioned above. For

more related work, we refer to [11–16].

In this paper, we use modern tools from the above-mentioned geometric description of

molecular motion to introduce a new way to reduce the symmetry of triatomic molecular

system. We obtain a reduced configuration space and deduce the reduced dynamics for a

triatomic molecule in a way which can be summarized as follows. Consider three atoms (or

nuclei) in R3. Using Jacobi coordinates, the translational symmetry in the absence of external
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forces can be used to reduce the nine-dimensional configuration space R3 × R3 × R3 of the

triatomic system to the six-dimensional space R3 × R3. Excluding collinear (and hence also

collisional) configurations from R3 × R3 gives the translation-reduced configuration space P

on which the special orthogonal group SO(3) acts freely. The space P is a principal bundle

with base space given by the positive half space R3+ [11]. Kinetic energy gives a metric on P,

and a connection can be obtained by defining horizontal spaces as orthogonal complements of

the tangent spaces of orbits of the SO(3) action. As known [3, 10], the connection on P has

a nontrivial holonomy group which is SO(2). This enables us to use the holonomy reduction

theorem [17] to reduce P to the holonomy bundle which we denote by Q. Since P is a trivial

bundle [11], Q is also trivial and hence topologically R3+ × SO(2), or equivalently R3+ × S1.

The reduced phase space is then given by the cotangent bundle T ∗Q. We explicitly derive the

Hamiltonian on T ∗Q and deduce the reduced dynamics on T ∗Q. In the final step, we then use

the conservation of the reduced angular momentum related to an S1 action on T ∗Q to apply

the symplectic reduction procedure. Using a theorem in [18], we find that the reduced phase

space is then a natural mechanical system, namely the cotangent bundle overQ/S1.

We note that there is no natural way to generalize these results to systems of four or more

atoms. The reason is that triatomic systems are in many respects special. For example, the

holonomy group of a system of four or more atoms is SO(3), and the translation-reduced

space is not a trivial bundle [10].

2. Reduced configuration space

2.1. Principle bundle picture

Consider a molecular system of three atoms. Let xi ∈ R, i = 1, 2, 3, be the position vectors

of these atoms. Suppose that there are no external forces. Then the mass-weighted Jacobi

vectors

r =

√
m1m3

m1 +m3

(x1 − x3),

s =

√
m2(m1 +m2)

m1 +m2 +m3

(
x2 −

m1x1 +m3x3

m1 +m3

)

can be chosen to reduce the symmetry of overall translations. (For different choices of Jacobi

vectors, see appendix B.) Excluding collinear (and hence also collisional) configurations we

obtain the six-dimensional translation-reduced configuration space

P =
{
x = (r, s) : λr + µs 6= 0 for all (λ, µ) ∈ R2\{0}

}
⊂ R3×R3.

Proper rotations g ∈ SO(3) act on P in the natural way:

g(r, s) = (gr, gs).

On P this action is free and it thus follows from standard results that

M := P/SO(3)

has a manifold structure. The space M is usually referred to as shape space or internal

space. Furthermore, the canonical projection π : P → M defines a principal bundle with the

structure group SO(3) [3]. This means that P consists of smoothly glued copies of SO(3),

i.e. locally, P is diffeomorphic to M × SO(3). Topologically, this local decomposition also

holds globally, which following Iwai [11] can be seen as follows. Using Jacobi coordinates

r =
√

〈r, r〉, s =
√

〈s, s〉, φ = cos−1(〈r, s〉 /rs),
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where 〈·, ·〉 is the usual dot product on R3, and introducing coordinates

w1 = r2 − s2, w2 = 2rs cosφ, w3 = 2rs sinφ > 0

one sees thatM ∼= R3+ = {(w1, w2, w3) : w3 > 0}. As pointed out in [11], P is a trivial bundle

as M is contractible to a single point. So, topologically, P ∼= R3+ × SO(3).

2.2. Nontrivial holonomy

Turning back to the action of SO(3) on P, one can see that the fundamental vector field Ã

associated with an element A in the Lie algebra so(3) is given by

Ã|x =
d

dt

∣∣∣∣
t=0

(etAx), (1)

or equivalently,

Ã|x = (Ar, As) = (w × r, w × s), (2)

where w ∈ R3 is the unique vector corresponding to A by the isomorphism

R−1 : so(3) → R3,



0 −a3 a2

a3 0 −a1

−a2 a1 0


 7→




a1

a2

a3


 . (3)

Let N be an orbit of the SO(3) action, say N = SO(3)x for a point x ∈ P ; then,

TxN =
{
Ã|x : A ∈ so(3)

}
. Consider the orthogonal complement Hx of TxN in TxP with

respect to the Euclidean dot product on P given by

dx2 = 〈dr, dr〉 + 〈ds, ds〉. (4)

Clearly the distribution x 7→ Hx , which we call the horizontal distribution, defines a

connection [11] ω : T P → so(3) on P which is a special case of the mechanical connection

defined in [19]. A vector field X∗ with X∗|x ∈ Hx for all x ∈ P is called horizontal. The

horizontal lift of a vector field X on M is accordingly the unique horizontal vector field X∗

on P such that dπ(X∗) = X. We have ω(X∗) = 0 for every horizontal vector field X∗ and

ω(Ã) = A for every fundamental vector field Ã. In order to compute the horizontal lifts of

the coordinate vector fields ∂r , ∂s, ∂φ on M, we give an explicit expression for the metric dx2

in (4). To this end we follow [10, 13] and introduce a frame u1, u2, u3 in R3 according to

r = ru1,

s = s cosφu1 + s sinφu2,

u3 = u1 × u2.

If Euler angles (α, β, γ ) on SO(3) are chosen via

g = eR(αe3)eR(βe2)eR(γ e3), 0 6 α, γ 6 2π, 0 6 β 6 π,

where e1, e2, e3 is the standard basis of R3, R is defined in (3) and gei = ui , i = 1, 2, 3, then

with

21 = sin γ dβ − sinβ cos γ dα,

22 = cos γ dβ + sinβ sin γ dα,

23 = cosβ dα + dγ,

one obtains [13]

dr = dru1 + r23u2 − r22u3,

ds = η1u1 + η2u2 + η3u3,

4
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where

η1 = ds cosφ − s sinφ dφ − s sinφ23,

η2 = ds sinφ + s cosφ dφ + s cosφ23,

η3 = s sinφ21 − s cosφ22.

In local coordinates, the metric dx2 then assumes the form

dx2 = dr2 + r2
(
22
2 +22

3

)
+ η21 + η22 + η23.

This expression can be used to locally compute the horizontal liftX∗ of a vector field X onM:

X∗ is orthogonal to ∂α, ∂β , ∂γ , and dπ(X∗) = X. It follows that

∂∗
r = ∂r , ∂∗

s = ∂s, ∂∗
φ = ∂φ −

s2

r2 + s2
∂γ . (5)

In gauge theory, the factor s2

r2+s2
is referred to as a component of a Yang–Mills potential [5].

2.3. Holonomy reduction

By equation (5) we have arrived at the well-known phenomenon of inseparability of rotations

and vibrations [3, 6]. Namely from (5) we see that

[∂∗
r , ∂∗

s ] = 0, [∂∗
r , ∂∗

φ] = −∂r

(
s2

r2 + s2

)
∂γ , [∂∗

s , ∂∗
φ] = −∂s

(
s2

r2 + s2

)
∂γ .

Thus, the distribution spanned by ∂∗
r , ∂∗

s , ∂∗
φ is not integrable, and hence, if these vector

fields are considered as infinitesimal vibrational motions, one can say that vibrations generate

rotations. This is why the internal space M is not a submanifold of P [5]. On the other hand,

∂∗
r , ∂∗

s , ∂∗
φ, ∂γ do span an involutive and hence integrable distribution. The maximal integral

manifold Qx of that distribution at a point x ∈ P is a good candidate for being the reduced

configuration space because vibrational motions through x live in that space. In fact, we will

obtain the reduced dynamics of a triatomic molecule on the cotangent bundle over Qx by

employing the holonomy reduction of principal bundles. A curve on P is called horizontal if

its tangents are horizontal. Fix a point x ∈ P and denote by P(x) the set of all points in P

which can be joined to x by horizontal curves. It is known that [3, 10] the holonomy group of

ω is SO(2) (see also appendix A), and since M is connected and paracompact, the holonomy

reduction theorem [17] implies that P(x) is a reduced bundle with the structure group SO(2),

which is in fact Qx. Furthermore, Qx is a trivial bundle as it has the same base space as P.

Since the holonomy bundles for different x are isomorphic it is common to drop the reference

to the base point x [17]. We will therefore from now on write Q instead of Qx, which also

explains the notation we already used in the introduction. The observations above suggest that

the reduced configuration space of a triatomic molecular system is topologically R3+×SO(2).

The induced metric on Q is thus

dq2 = dr2 + ds2 +
r2s2

r2 + s2
dφ2 +

1

r2 + s2
ζ 2, (6)

where

ζ = s2 dφ + (r2 + s2) dγ. (7)

Note here that reducing the configuration space to Q cannot be interpreted as reducing

the problem to the planar three-body problem. The points in Q for a given base point x

represent configurations of the full space P which can be joined to x by horizontal motions.

The horizontal motions are in fact planar (see appendix A). However, Q should not be

5
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confused with the configuration space of the planar three-body problem. By the holonomy

reduction theorem, Q is a principal bundle whose base space is the internal spaceM. SinceM

is contractible the bundle Q is trivial. In contrast, the translation-reduced space in the planar

three-body problem is not a trivial bundle [20]. In fact the bundle Q defined in this paper can

be viewed as a subbundle of the fibre bundle that one finds in the case of the planar three-body

reduction corresponding to non-collinear configurations of a given parity [10].

3. Reduced dynamics

3.1. Angular momentum

In the following, we want to put our derivation above into the context of some well-known

results. It is known [1] that in the case of small vibrations one can separate vibrations and

rotations in the vicinity of an equilibrium point. In the present situation, if one chooses dγ = 0

in (6) the well-known Eckart kinetic energy is obtained. This is the gauge-dependent internal

metric hµν in [10]. Thus, one can conclude that in the case of small vibrations, the internal

motions of a molecule live in the integral manifolds of the distribution spanned by ∂r , ∂s, ∂φ ,

called the Eckart space. Next, consider the angular momentum

J = r × dr + s × ds

on P which is computed locally to be

J = s sinφη3u1 + (r222 − s cosφη3)u2 + (r223 + s cosφη2 − s sinφη1)u3.

So, its restriction to Q is

J|
Q

= ζu3.

If the angular momentum of the system is identically zero, then ζ = 0, and hence

dq2|J=0 = dr2 + ds2 +
r2s2

r2 + s2
dφ2.

3.2. Holonomy-reduced Hamiltonian

In the case of vanishing angular momentum the Hamiltonian is obtained to be

H =
1

2
p2r +

1

2
p2s +

1

2

(
1

r2
+
1

s2

)
p2φ + V (r, s, φ), (8)

where pr , ps, pφ are the conjugate momenta and V (r, s, φ) is the potential energy which is

assumed to be rotationally invariant. This Hamiltonian is widely used in applications. By (7),

we observe that vibrational motions live in the integral manifold of the distribution spanned

by ∂∗
r , ∂∗

s , ∂γ . That space may be called zero-angular momentum space.

If the reduced angular momentum J|Q is a non-zero constant, we have ζ = const 6= 0.

Then, equivalently, ∂∗
φ is a non-zero constant and hence the vibrational motions remain in a

three-dimensional affine space which is parallel to the zero-angular momentum space.

Taking into account the contribution of ζ in the induced metric dq2 on Q in (6) the

Hamiltonian in (8) changes to the general holonomy-reduced Hamiltonian

H =
1

2
p2r +

1

2
p2s +

1

2

(
1

r2
+
1

s2

)
p2φ −

1

r2
pφpγ +

1

2r2
p2γ + V (r, s, φ).

6
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The corresponding Hamiltonian vector field is given by

X = pr∂r + ps∂s +

((
1

r2
+
1

s2

)
pφ −

1

r2
pγ

)
∂φ +

1

r2
(pγ − pφ)∂γ

+

(
1

r3
(pγ − pφ)2 −

∂V

∂r

)
∂pr
+

(
1

s3
p2φ −

∂V

∂s

)
∂ps

−
∂V

∂φ
∂pφ

.

Since γ is cyclic the conjugate momentum pγ is conserved. To put it another way, J|
Q
is

an S1-equivariant momentum and the standard symplectic reduction theorem can be applied.

Using a theorem by Arnold (see [18], p 378), the resulting reduced phase space is again a

natural mechanical system, i.e. a cotangent bundle.

4. Comments on related work

4.1. The relation between the motions of a triatomic molecule and a charged particle in a

magnetic field

In [21, 22], the idea is introduced to describe themotion of a charged particle in amagnetic field

by extending the configuration space R3 to R3 × S1 such that the angle corresponding to S1 is

cyclic and its conserved conjugate momentum gives the charge of the particle in the magnetic

field. Since the holonomy-reduced configuration space isR3+×S1, we can identify the motion

of a triatomic molecule to that of a charged particle in a magnetic field as follows. Let q denote

a point in M with coordinates (r, s, φ). If A denotes the one-form (r2 + s2)−1ζ = s2

r2+s2
dφ on

R3+, then by metric (6) the kinetic energy can be written as

LK =
1

2
‖q̇‖2 +

r2 + s2

2
(A(q̇) + γ̇ )2,

which is reminiscent of the so-called Kaluza–Klein Lagrangian [22]. The one-form A plays

the role of a vector potential for the magnetic field. The conserved momentum

pγ =
∂LK

∂γ̇
= (r2 + s2)(A(q̇) + γ̇ )

is the charge e = cpγ (with c denoting the speed of light) [22].

4.2. Relation to symplectic and dimensional reduction

In [6], the symplectic reduction procedure [7, 8] is applied to the N-body problem. The

cotangent bundle over the translation-reduced configuration space P is a symplectic manifold

with the canonical two-form, and the angular momentum J : T ∗P → so(3) is an equivariant

momentum map. For a µ 6= 0, it is shown that J−1(µ) is a principal bundle with the structure

group SO(2)whereas the zeromomentum space J−1(0) is a principal bundle with the structure

group SO(3). Furthermore J−1(0)/SO(3) is shown to be diffeomorphic to T ∗(P/SO(3)),

but J−1(µ)/SO(2) is no more a cotangent bundle because of dimensionality. As pointed out

in [6], the procedure for the latter when applied to three bodies is in fact the elimination of

nodes.

In contrast to the symplectic reduction procedure, the first step in this paper was to pass

from the translation-reduced configuration space P of a triatomic molecule to a subbundle Q

(the holonomy-reduced bundle) which is a principal bundle with the structure group SO(2).

Afterwards, the angular momentum is then restricted to T ∗Q, and finally the symplectic

reduction procedure is applied. The reduced space is then always a cotangent bundle as

follows from a theorem by Arnold (see [18], p 378).

7
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We note that the method used in this work is strongly related to dimensional reduction

[23, 24], a method developed for symmetries of gauge fields. An example of this is the case of

spherical symmetry in six dimensions applied to an SU(3) gauge theory, where the two extra

dimensions describe a sphere of radius R. One solution, with the largest set of Higgs fields,

reduces to the four-dimensional Weinberg–Salam model without fermions [23].

5. Conclusions

In this paper, we used the geometric theory of molecular mechanics [3, 10, 11] to reduce the

number of degrees of freedom in the molecular three-body problem. We followed the principal

bundle setting of Guichardet [3] on the translation-reduced configuration space, and using the

holonomy reduction theorem [17], it was possible to reduce to a principal subbundle. This may

be interpreted as separating two rotational degrees of freedom from the maximal space that

includes vibrational motions. It was then possible to induce the angular momentum and apply

the very symplectic reduction procedure (to be precise, we used it in the form of Noether’s

theorem here) to reduce to a six-dimensional phase space which is a cotangent bundle, i.e.

the system reduced this way is a natural mechanical system. For the case of zero angular

momentum, this is the well-known separability of vibrations and rotations. In this paper,

we showed that a similar separation can also be obtained for non-zero angular momentum if

one chooses a holonomy-reduced configuration space. We moreover used this approach to

reduction to rephrase the well-known fact [21] that a triatomic molecular system behaves like

a single particle in a magnetic field.
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Appendix A. A lemma by Guichardet

For completeness, we give a brief proof of the fact that a vibrational motion of a triatomic

molecule, which is defined as a curve with horizontal tangents, remains in a fixed plane as

originally formulated by Guichardet [3]. Let x(t) = (r(t), s(t)) be a horizontal curve on P.

We show that Fx(t) := span {r(t), s(t)} is fixed. Indeed, since x(t) is horizontal it is orthogonal

to all fundamental vector fields which are given in (2), and hence r(t)× ṙ(t)+ s(t)× ṡ(t) = 0.

That is, the angular momentum is vanishing along the curve. Let y(t) be a curve in R3

with 〈y(t), y(t)〉 = 1 which is orthogonal to Fx(t). By the vanishing angular momentum

condition, we have y(t) × (r(t) × ṙ(t)) + y(t) × (s(t) × ṡ(t)) = 0. But this means

〈y(t), ṙ(t)〉 r(t) + 〈y(t), ṡ(t)〉 s(t) = 0. Then 〈y(t), ṙ(t)〉 = 〈y(t), ṡ(t)〉 = 0 follows since

r(t) and s(t) are linearly independent. As 〈y(t), ẏ(t)〉 = 0, ẏ(t) is in Fx(t). And by

〈y(t), r(t)〉 = 〈y(t), s(t)〉 = 0, we have 〈ẏ(t), r(t)〉 = 〈ẏ(t), s(t)〉 = 0, which implies

that ẏ(t) is orthogonal to Fx(t). In conclusion ẏ(t) is null.

As a conclusion of the above fact, it is observed [10] that during vibrational motions or

shape deformations the Jacobi vectors remain in a fixed plane, and hence the Jacobi vectors

before and after the vibrational motion can be transformed to one another by a plane rotation,

i.e. the holonomy group is SO(2).

8



J. Phys. A: Math. Theor. 44 (2011) 165202 Ü Çiftçi and H Waalkens

Appendix B. The kinematic group

Different clusterings of position vectors give rise to different choices of mass-weighted Jacobi

vectors. These different choices are related to each other by transformations which are called

democracy transformations [10]. The set of all democracy transformations forms a subgroup

of the symmetry group SO(3) called the democracy or kinematic group. For the three-body

problem the kinematic group is SO(2). This is another special feature of the three-body

problem. For a recent discussion of the democracy transformations, we refer to [25].
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