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Further investigations will be necessary to identify textile 
residues, and their potential interactions with simulated 
human sweat in order to evidence potential adverse effects 
on human health.
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Contaminants are considered as “emerging” if they have 
not been historically present in the environment on a global 
scale, even because nobody looked at them intentionally. 
They can be commonly derived from both treated and 
untreated wastewater indicating that they are mostly pro-
duced at industrial scale, currently used also in everyday 
homecare activities, and easily and unintentionally dis-
persed into the environment. Some recent examples are 
pharmaceutical and personal care products (Carotenuto et 
al. 2014; Lofrano et al. 2016), engineered nanomaterials 
(Libralato 2014), tannins (Lofrano et al. 2008a; Libralato et 
al. 2011), micro- and nano-plastics (Mattsson et al. 2015). 
Despite their continuous release worldwide, dyes and their 
residues on sold textile goods still remain a great problem 
and their impact has been scarcely evaluated. Consumers 
involuntarily leach chemicals from textiles during normal 
wear (e.g. sweat) and washing (e.g. hand washing or wash-
ing machine). This risk increases when finishing steps are 
not applied properly especially in developing countries 
(Khatri et al. 2015; OEKO 2016). Thus part of chemicals 
used for textile production could be still present in textile 
goods and their characterization and proper management is 
becoming a challenging responsibility for textile manufac-
turers. Water use from public water supply ranged within 
72–400  L per person day−1 in EU (EUROSTAT 2016) 
and 300–380  L per person day−1 in USA (USGS 2016). 

Abstract  Textile dyes and their residues gained grow-
ing attention worldwide. Textile industry is a strong water 
consumer potentially releasing xenobiotics from washing 
and rinsing procedures during finishing processes. On a 
decentralised basis, also final consumers generate textile 
waste streams. Thus, a procedure simulating home washing 
with tap water screened cotton textiles leachates (n = 28) 
considering physico-chemical (COD, BOD5, and UV 
absorbance) and ecotoxicological data (Daphnia magna, 
Pseudokirchneriella subcapitata and Lepidium sativum). 
Results evidenced that: (i) leachates presented low biode-
gradability levels; (ii) toxicity in more than half leachates 
presented slight acute or acute effects; (iii) the remain-
ing leachates presented “no effect” suggesting the use of 
green dyes/additives, and/or well established finishing pro-
cesses; (iv) no specific correlations were found between 
traditional physico-chemical and ecotoxicological data. 
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after 5 days (BOD5) was measured by manometric pressure 
difference (OxiTop, ISCO, IT) and after seeding activated 
sludge taken from a municipal wastewater treatment plant. 
The BOD5/COD ratio identified leachate biodegradability 
(Chamarro et al. 2001) making leachates with values >0.4 
suitable for biological treatment (Loos et al. 2007). Absor-
bance at 254 and 280 nm was determined in triplicate using 
UV–VIS spectrophotometer (1 cm quartz tube, Lambda 12 
Model, Perkin Elmer, Waltham, Massachusetts), quanti-
fying double bonds and aromatic structures. A battery of 
toxicity tests was considered including the 72  h chronic 
test with P. subcapitata, the 24  h mortality test with D. 
magna, and the 72 h acute test with L. sativum (Libralato et 
al. 2016a, b; Lofrano et al. 2016). Before toxicity testing, 
pH values were measured (perpHecT LogR meter, model 
330, Orion, Beverly, MA, USA) and reported in Table 1. 
Acute toxicity tests with D. magna were carried out accord-
ing to ISO (2013). Newborn daphnids (<24 h old, n = 5) 
were exposed in four replicates for 24 and 48 h at 20 ± 1°C 
under continuous illumination (1000  lx). Before starting 
the test, they were fed with P. subcapitata (300,000 cells/
mL) ad libitum. Toxicity was expressed as percentage of 
dead organisms. The chronic growth inhibition test with 
P. subcapitata was carried out according to ISO (2012). 
Cultures were kept in Erlenmeyer flasks. The initial inocu-
lum contained 104 cells/mL. The specific growth inhibi-
tion rate was calculated considering 6 replicates exposed at 
20 ± 1°C for 72 h under continuous illumination (6000 lx). 
Effect data were expressed as percentage of growth inhi-
bition. The acute bioassay with L. sativum evaluated the 
potential toxicity considering the root elongation accord-
ing to OECD (2006). Experiments were conducted in trip-
licate (n = 10) at 25 ± 1°C for 72  h in aqueous solutions. 
Seed germination and root elongation inhibition normal-
ized on negative control data were expressed as percentage 
of effect, and the germination index (GI) was calculated 
as reported in Libralato et al. (2016a). The significance 
of differences between average effect values of different 
experimental treatments and controls was assessed by the 
analysis of variance (ANOVA) considering a significance 
threshold level always set at 5 %. When ANOVA revealed 
significant differences among treatments, post-hoc tests 
were carried out with Dunnett’s method and Tukey’s test. 
The assessment of macrophyte phytotoxicity endpoints was 
carried out with ImageJ (Schneider et al. 2012). Whenever 
possible, toxicity was expressed as EC50 along with 95 % 
confidence limit values. Otherwise, toxicity was expressed 
as percentage of effect (PE, %) or toxic unit (TU). Principal 
component analysis (PCA) and biplot representation were 
proposed for data integration and interpretation. Statisti-
cal analyses and graphs were carried out using Microsoft® 
Excel 2013/XLSTAT©-Pro (Version 7.2, 2003, Addinsoft, 
Inc., Brooklyn, NY, USA). Toxicity data were integrated 

At present, many developing countries such as Indonesia 
(Kerstens et al. 2016), Pakistan (Ensink et al. 2004), Ghana 
(Keraita and Drechsel 2004), and Senegal (Faruqui et al. 
2004) (i.e. estimated consumption of up to 20 L person day−1 
in Africa (IWfA 2016)) struggle to provide water and waste-
water services, while textile residues are discharged without 
any treatment into surface water (Lofrano et al. 2008b). In 
India, millions of people wash their clothes directly into riv-
ers turning them into giant launderettes (Robinson 2015). In 
Europe, about 80 % of the population is connected to waste-
water treatment, whereas in the South-East Europe (e.g. 
Turkey, Bulgaria and Romania) only approximately 40 %; 
the remaining part of untreated wastewater flows into the 
closest receiving water bodies (EEA 2012).

Several studies demonstrated the toxicity of textile dyes 
(Bae and Freeman 2007; Ballesteros et al. 2006; Bertanza et 
al. 2013; Bazin et al. 2012; De Souza et al. 2007; Loos et al. 
2007; Meriç et al. 2005; Novotny et al. 2006; Srivastava et 
al. 2004; Suryavathi et al. 2005; Wang et al. 2002) showing 
potential adverse effects on human health and the environ-
ment (Dave and Aspegren 2010). High molecular synthetic 
textile auxiliaries and dyes can produce wastewater contain-
ing large amounts of refractory COD. Respirometric mea-
surements showed that dye carriers could exert high toxicity 
causing serious inhibition of microbial respirometric activ-
ity (Alaton et al. 2006).

This study aimed at evaluating cotton textile leachates 
in home washing simulated conditions integrating toxicity 
data (Daphnia magna, Pseudokirchneriella subcapitata, 
and Lepidium sativum) with basic wastewater information 
(BOD5, COD, UV–VIS absorbance) in order to provide a 
preliminary overview of their effects.

Materials and Methods

Colored cotton textile goods (n = 28) were randomly pur-
chased at different prices in Avellino-Salerno area (Italy). 
All textiles, colored by staining (i.e. no patterned pictures 
on them), were new and unwashed when purchased. Leach-
ates were produced immersing textiles (1 m2) in 2.5 L of 
cold tap water from Salerno aqueduct (100 mg CaCO3/L, 
pH = 7.50, Cl < 0.5 mg/L) at 25 °C for 30 min in static con-
ditions (i.e. 1 textile in 2.5 L in 1 replicate) using a surface-
to-volume ratio (s/v) of 0.4 similarly to Dave and Aspegren 
(2010) (i.e. the maximum s/v). Neither soap nor other deter-
gents were used to observe background effects avoiding any 
washing product potential interference to the final wash out 
quality. Leachates were stored in 0.5 L glass bottles (no air 
space between the sample and the lid) and kept refrigerated 
at 4 °C. Samples were labeled as summarized in Table 1. 
Total chemical oxygen demand (COD) was determined 
according to APHA (1998). The biological oxygen demand 
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different chemical structures (Table 1). Although there was 
a strong correlation (0.947) between UV254 and UV280, a 
limited correlation was noticed between COD and UV–VIS 
values (COD/UV254 with p = 0.592 and COD/UV280 with 
p = 0.575, α = 0.05). The pH values of leachates did not sig-
nificantly change compared to the initial leaching tap water 
(7.50). Toxicity data were summarized in Fig.  1 includ-
ing D. magna 24 h (Fig. 1a), D. magna 48 h (Fig. 1b), P. 
subcapitata (Fig. 1c), and L. sativum (Fig. 1d) effects. The 
analysis of toxicity data from Fig. 1a evidenced the pres-
ence of two main groups of samples considering a thresh-
old value ≤ 10 % for the effects significantly different from 
the negative control. Most samples presented effects below 
the established threshold except for T5, T9, T11, T15, T19, 
T20 and T25, showing toxicity up to 50 % (T11). After 
48 h exposure (Fig. 1b), the number of samples presenting 
toxicity effects ≤ 10 % decreased evidencing that contact 
time plays an important role in toxicity definition. Except 

according to Libralato et al. (2010) and Persoone et al. 
(2003) considering the class weight score system.

Results and Discussion

Physical and chemical data of textile leachates were 
reported in Table  1. COD values greatly changed (from 
10 to 207  mg/L), while BOD5 was ≤ 22  mg/L. COD 
values increased in the following order: Blue > Yel-
low > Grey > Cream > Black > White > Red > Light 
blue > Fuchsia. The highest COD value (207  mg/L) was 
associated to a blue textile; however, COD from blue goods 
fell within 10–207  mg/L. Leachate from Fuchsia textiles 
(T12–14) showed the lowest COD (Table 1). Leachate bio-
degradability (Chamarro et al. 2001) was always very low 
(BOD5/COD ≤ 0.4). UV–VIS measurements were higher 
than tap water and varied in a wide range due to their 

Table 1  Physico-chemical characterization of textile leachates

Samples Colors BOD5 (mg/L) COD (mg/L) BOD5/COD UV254 (1/m) UV280 (1/m) pH

TW water Colorless 0 <5 0 0 0 7.50
T1 Red <10 29 – 0.0513 0.0366 7.63
T2 10 47 0.21 0.1569 0.0986 7.52
T3 <10 17 – 0.0687 0.0503 7.57
T4 White 12 56 0.21 0.2227 0.1766 7.61
T5 <10 28 – 0.1434 0.1202 7.49
T6 <10 27 – 0.1705 0.1482 7.53
T7 10 33 0.30 0.0578 0.0465 7.59
T8 13 118 0.11 0.1570 0.1360 7.99
T9 13 35 0.37 0.0332 0.0302 7.67
T10 Yellow 15 66 0.23 0.2297 0.1815 7.63
T11 15 147 0.10 3.2566 0.9602 7.59
T12 Fuchsia <10 7 – 0.0238 0.0074 7.61
T13 <10 12 – 0.1102 0.0800 7.60
T14 <10 17 – 0.0569 0.0481 7.62
T15 Blue 10 128 0.08 0.0978 0.0794 7.63
T16 10 76 0.13 0.2159 0.1651 7.62
T17 <10 10 – 0.0761 0.0622 7.62
T18 22 73 0.30 0.1846 0.1319 7.50
T19 11 43 0.26 0.1686 0.1260 7.50
T20 13 207 0.06 0.3967 0.3206 7.49
T21 20 51 0.39 0.1077 0.0803 7.48
T22 Cream 20 78 0.26 0.0945 0.0457 7.51
T23 <10 27 – 0.2582 0.092 7.55
T24 Black 18 73 0.25 0.1045 0.0722 7.56
T25 Pink <10 10 – 0.0643 0.0398 7.68
T26 Light-blue 18 43 0.40 0.2147 0.1759 7.53
T27 Light-green 10 66 0.15 0.2102 0.1608 7.52
T28 Blue-gray 20 79 0.25 0.0801 0.0634 7.51

TW tap water
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2016a, b), toxicity data from a battery of toxicity tests 
should be integrated providing a final judgment on leach-
ate quality. Considering the class weight score (CWS) sys-
tem (Persoone et al. 2003), toxicity data (D. magna (48 h), 
P. subcapitata and L. sativum) were combined and ranked 
into three main groups of samples as summarized in Fig. 2: 
(i) no acute toxicity (CWS < 0.4); (ii) slight acute toxicity 
(0.4 ≤ CWS < 1); and (iii) acute toxicity (1 ≤ CWS < 10). 
The CWS approach confirmed that T13 and T21 presented 
no acute toxicity because bioassays’ results were ≤10 %. 
Other samples averagely presented no acute toxicity like 
T3, T4, T8, T10, T16, T17, T23, T25, T26 and T27. Any-
way, their toxicity values taken singly reached a maxi-
mum of 20 % effect according to CWS approach. The total 
amount of no toxic samples accounted for 43 % of the total 
investigated samples. Approximately 39 % of samples were 
ranked as slight acute toxic (T1, T2, T5, T6, T7, T9, T14, 
T19, T20, T24 and T28) and 18 % as acute toxic (T11, T12, 
T15, T18, and T22). This means that 57 % of leachates pre-
sented effects able to generate some adverse ecotoxicologi-
cal consequences.

A biplot summarizing PCA results concerning chemical 
and ecotoxicological data is shown in Fig. 3. The first two 
principal components accounted for 38.02 and 19.62 % of 
variation, respectively. Therefore, the two-axis ordination 
diagram can depict 57.64 % of variation. The biplot regard-
ing component loadings suggested that the F1 scores are 
influenced by high values of COD, UV254 and UV280 as well 
as 24 h D. magna toxicity data. The loading of P. subcapitata 

for 10 samples (T3, T4, T7, T8, T13, T14, T17, T21, T24, 
and T27), all others presented immobilization effects up to 
95 % (T15) in the exposed population. Keeping the same 
threshold set for D. magna, the effects of leachates on P. 
subcapitata after 72 h exposure (Fig. 1c) can be clustered 
into three main groups: (i) no effect (−10 % ≤ PE ≤ 10 %); 
(ii) biostimulation growth effect (PE < −10 %); (iii) and 
inhibitory growth effects (PE > 10 %). Only 8 samples (T1, 
T6, T9, T13, T20, T21, T23, and T26) presented no effect at 
all. Comparing D. magna 48 h and microalgae results, only 
T13 and T21 were deemed as not toxic. Biostimulation was 
observed in 8 samples (T2, T4, T5, T7, T12, T14, T22, and 
T24) up to −38 %. All other leachates presented microalgae 
growth inhibition effects up to 39 %.

According to Libralato et al. (2016a), L. sativum GI (%) 
(Fig. 1d) data can be clustered into three main groups: (i) no 
effect (80 % ≤ GI ≤ 120 %); (ii) biostimulation (GI > 120 %); 
and (iii) inhibition (GI < 80 %). Several samples presented 
no effect (T1, T2, T3, T6, T8, T9, T13, T16, T20, T21, T23, 
T25, T26, T27). Samples T13 and T21 were confirmed to be 
not toxic also by L. sativum. A group of 7 samples (T4, T5, 
T7, T12, T14, T22, and T24) showed stimulatory effects up 
to 136 % of GI and another group of 7 samples (T10, T11, 
T15, T17, T18, T19, and T28) showed inhibitory effects up 
to 62 % of GI. Leachate toxicity data from P. subcapitata 
and L. sativum linearly correlated suggesting (y = 101.214 
(± 0.492) − 0.929 (± 0.020) x; R2 = 0.986) that leachates 
composition acted very similarly in autotrophic photosyn-
thetic organisms. According to Libralato et al. (2008, 2010, 

Fig. 1  Textile leachate data (T1–28) with D. magna (24  h) (a), D. 
magna (48 h) (b), P. subcapitata (72 h) (c), and L. sativum (72 h) (d); 
data with different letters (a–n) are significantly different (Tukey’s, 

p < 0.05); R red, W white, Y yellow, F fuchsia, B blue, C cream, Bl 
black, P pink, lB light-blue, lG light-green, BG blue-gray
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(T20) toxicity. The values of BOD5, BOD5/COD and color 
showed slight/no correlations within the dataset. Dave and 
Aspegren (2010) reported similar results on textile goods, 
but considering various fibers other than cotton, identifying 
significantly higher toxicity for printed rather than unprinted 
textiles. Textile goods releasing unknown chemicals to the 
aquatic environment can become a wide emerging concern. 
This study proposed a survey of potential effects related to 

and L. sativum toxicity data mainly influenced F2 scores. 
Looking at the ordination plot of component scores in F1 
and F2 biplot, it was found that wastewater samples could 
be clustered into two main groups according to eigenval-
ues: (1) T11, T15 and T20 (F1); and (2) all the remaining. 
It seems that only T11, T15 and T20 are correlated with 
COD, UV254 and UV280 data presenting under an ecotoxi-
cological viewpoint acute (T11 and T15) or slightly acute 

Fig. 3  Principal component 
analysis (PCA) as biplot rep-
resentation with loadings and 
scores in the coordinates of the 
first two principal components 
(F1 and F2) of wastewater 
samples; Dm_24 = D. magna 
24 h toxicity data, Dm_48 = D. 
magna 48 h toxicity data, 
Ps_72 = P. subcapitata 72 h tox-
icity data; Ls_72 = L. sativum 
72 h toxicity data

 

Fig. 2  Hazard classification 
for textile leachates (T1–28) 
potentially discharged into the 
aquatic environment according 
to Persoone et al. (2003); white, 
no acute toxicity (TU < 0.4); 
dark gray, slight acute toxicity 
(0.4 ≤ TU < 1); and black, acute 
toxicity (1 ≤ TU < 10); R Red, 
W White, Y yellow, F fuchsia, B 
blue, C cream, Bl black, P pink, 
lB light-blue, lG light-green, BG 
blue-gray
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cotton textile house washing. Results evidenced: (i) chemi-
cal residues in tap water leachates related to dyes and dyes’ 
additives presenting a low biodegradability; (ii) toxicity in 
more than half of the investigated leachates samples pre-
sented from slight acute to acute effects; (iii) the remaining 
part of leachate samples presented no effects according to 
the selected battery of toxicity tests suggesting the use of 
green dyes (and/or additives), and/or well established fin-
ishing processes; (iv) no specific correlation were found 
between traditional physico-chemical (COD, BOD5, UV254, 
and UV280) and ecotoxicological data. Further studies could 
investigate which kind of dyes and additives residues are 
responsible for toxicity effects, identify the best finish-
ing processes enabling low or no toxicity effects in textile 
leachates normalizing data on textile weft considering the 
number of fibres per unit area. Moreover, due to the eco-
toxicological effects highlighted, it would be interesting 
assessing the potential interactions between textile residues 
and simulated human sweat in order to evidence potential 
adverse effect on human health.
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