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Abstract: The phenolic compound contents and antioxidant activities of the leaf extracts of nine olive
genotypes were determined, and the obtained data were analysed using chemometric techniques.
In the crude extracts, 12 compounds belonging to the secoiridoids, phenylethanoids, and flavonoids
were identified. Oleuropein was the primary component for all genotypes, exhibiting a content
of 21.0 to 98.0 mg/g extract. Hydroxytyrosol, verbascoside, luteolin 7-O-glucoside, and luteolin
4′-O-glucoside were also present in noticeable quantities. Genotypes differed to the greatest extent in
the content of verbascoside (0.45–21.07 mg/g extract). The content of hydroxytyrosol ranged from
1.33 to 4.03 mg/g extract, and the aforementioned luteolin glucosides were present at 1.58–8.67 mg/g
extract. The total phenolic content (TPC), DPPH• and ABTS•+ scavenging activities, ferric reducing
antioxidant power (FRAP), and ability to inhibit the oxidation of β-carotene-linoleic acid emulsion
also varied significantly among genotypes. A hierarchical cluster analysis enabled the division of
genotypes into three clusters with similarity above 60% in each group. GGE biplot analysis showed
olive genotypes variability with respect to phenolic compound contents and antioxidant activities.
Significant correlations among TPC, FRAP, the values of both radical scavenging assays, and the
content of oleuropein were found. The contents of 7-O-glucoside and 4′-O-glucoside correlated with
TPC, TEAC, FRAP, and the results of the emulsion oxidation assay.

Keywords: olive leaf extract; phenolic profile; antioxidant activity; GGE biplot analysis;
cluster analysis; olive genotypes

1. Introduction

The evergreen olive tree (Olea europaea L.) is native to coastal Mediterranean areas and is one of
the oldest crops in this region. Large amounts of by-products are generated by olive oil production
processes, including olive leaves [1,2]. This cheap agro-industrial material is generally used as animal
feed or energy biomass, but recently, interest in the potential use of olive leaves and olive leaf extracts
in the pharmaceutical, food, and cosmetics industries is growing [2–5].

The biological activities of olive leaf compounds have been reported. These compounds have
cholesterol lowering effects, antiviral and antibacterial activity against a wide range of microorganisms,
radioprotective effect, in vitro and in vivo antioxidant activity, and antiproliferative effect against
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cancer and endothelial cells [6]. The potential of olive leaves in the prevention of hypertension,
cardiovascular and neurological diseases, diabetes, and hyperlipidaemia has been shown [5].
The biological activity of the olive leaves allows them to be considered a functional food ingredient.
The olive leaf components can also extend the shelf life of food products by limiting lipid oxidation
or antimicrobial effects [2]. Therefore, several lipid-rich foods or refined oils enriched with olive leaf
extracts showed remarkable oxidative stability. The antioxidant, antimicrobial, and anti-inflammatory
properties of olive leaf extracts can impart usefulness as an ingredient in skin care products and
cosmetics [4].

High-added-value constituents of olive leaf by-product are phenolic compounds [2].
These bioactive compounds with potential technological functions constitute approximately 2.5%
of olive leaves [1] and can be extracted in good yields using conventional solvent extraction techniques
or modern methods, e.g., ultrasound-assisted, microwave-assisted, supercritical fluid extraction,
and pressurised liquid extraction [5]. The major phenolic constituent of olive leaves is oleuropein.
This ester of hydroxytyrosol and elenolic acid glucoside is classified as a secoiridoids, a group
of compounds present exclusively in plants belonging to the Oleaceae family [7]. In addition to
secoiridoids, in olive leaves, there are significant quantities of phenylethanoids, such as tyrosol and
hydroxytyrosol, as well as flavonoids represented by flavonols (primarily quercetin and isorhamnetin
and their derivatives) and flavones (primarily apigenin and luteolin and their derivatives) [6].
The presence of phenolic acids and their derivatives was also noted [8]. Many phenolic compounds
occurring in olive leaves had significant radical scavenging activity [9,10]. Additionally, synergistic
behaviour among phenolic compounds in the olive leaf extract was observed [9]. The Trolox equivalent
antioxidant capacity (TEAC) of the whole extract was higher with respect to the theoretical value
obtained from the TEAC of individual phenolic compounds.

It is well-known that various biotic and abiotic factors affect the quantitative and qualitative
composition of phenolic compounds of natural materials and hence biological activity of
plants/extracts. Olive leaves are not the exception in this respect [6]. One of the most important factors
differentiating the profile of phenolic compounds and the antioxidant activity of olive leaves is the
genotype of olive trees [11–15]. The content of major phenolic compounds of olive leaves, especially
oleuropein, can be used as chemotaxonomic markers [6]. The use of various statistical models has
enabled discrimination among cultivars [8,11,16].

The aim of this study was to comparatively analyse the phenolic compound profiles and
antioxidant activities of the aqueous-methanolic extracts of O. europaea leaves sampled in genotypes
grown in Turkey. Chemometric techniques, including hierarchical cluster and GGE biplot analyses,
were applied to evaluate the genotypic variation and determining the most convenient genotypes
with regard to antioxidant activity and phenolic compound content. To the best of our knowledge,
the analysed genotypes were compared for the first time regarding their phenolic compound profiles
and antioxidant activities.

2. Results and Discussion

2.1. Extraction Yield and Total Phenolic Content

The yield of olive leaf extracts varied from 24.46 to 29.87% (Table 1). The highest values were
noted for ‘Ayvalik’, ‘Esek Zeytini’, and ‘Ascolana’ genotypes. In turn, ‘Uslu’ and ‘Saurani’ gave lower
yields of extract. The total phenolic content (TPC) of olive leaf extracts ranged from 110 mg GAE/g to
268 mg GAE/g (Table 1) and decreased in the following order of genotypes: ‘Esek Zeytini’ > ‘Ayvalik’
= ‘Ascolan’ > ‘Kilis Yaglik’ > ‘Memecik’ = ‘Cekiste’ > ‘Gemlik’ = ‘Saurani’ > ‘Uslu’. The hot-water
extracts obtained from leaves of the same genotypes were characterised by 1.4- to 2.6-fold lower TPC,
but as in our research, ‘Esek Zeytini’ and ‘Uslu’ extracts were the most and least abundant in phenolic
compounds, respectively [13]. Herrero et al. [17] determined a lower TPC of extracts prepared using
pressurised liquid (water or ethanol) extraction (26.2–58.7 mg GAE/g). In turn, the TPC found in
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our study was in accordance with results determined for the methanolic extract of tree olive leaves
from natural habitats and cultivated conditions: 127.18–314.69 mg GA/g [18] and for two cultivar leaf
extracts obtained with different solvents, i.e., water, water-methanol (1:1, v/v), water-ethanol (1:1, v/v):
230.15–241.60 mg GAE/g [19]. When the yield of extraction was considered, the TPC of olive leaf of
Turkish genotypes in the present study (27.0–79.7 mg GAE/g dry leaves, data not show) was similar
to that noted for Spanish (52.2–60.64 mg/g dry weight of leaves) and Italian (40.9–66.6 mg GAE/g dry
leaves) cultivars [14,20].

Table 1. Extract yield, total phenolic content (TPC), Trolox equivalent antioxidant capacity (TEAC) and
ferric-reducing antioxidant power (FRAP) of olive leaf extracts of different genotypes.

Genotype Extract Yield
(%)

TPC
mg GAE/g)

TEAC
(mmol TE/g)

FRAP
(mmol Fe2+/g)

Ascolona 29.58 236 ± 4.8 b 0.83 ± 0.03 e 1.79 ± 0.037 c

Ayvalik 29.87 242 ± 3.2 b 0.98 ± 0.08 b 1.78 ± 0.027 c

Cekiste 25.84 206 ± 0.4 d 0.96 ± 0.06 c 1.48 ± 0.048 e

Esek Zeytini 29.79 268 ± 3.0 a 1.01 ± 0.04 a 2.12 ± 0.016 a

Gemlik 27.39 199 ± 1.2 e 0.93 ± 0.04 d 1.42 ± 0.024 e

Kilis Yaglik 28.52 225 ± 8.1 c 1.01 ± 0.08 a 1.99 ± 0.069 b

Memecik 27.11 209 ± 3.4 d 0.84 ± 0.10 d 1.60 ± 0.074 d

Saurani 24.63 197 ± 1.7 e 0.75 ± 0.05 f 1.23 ± 0.052 f

Uslu 24.46 110 ± 4.3 f 0.70 ± 0.14 g 1.04 ± 0.019 g

Data are expressed as the mean± standard deviation (n = 3) for extract of each genotype. Values in the same column
having different letters differ significantly (p < 0.05). GAE: Gallic acid equivalents. TE: Trolox equivalents.

2.2. Identification and Quantification of Phenolic Compounds

The HPLC separation of the phenolic compounds of olive leaf extract is shown in Figure 1.
The compounds corresponding to peaks 1–12 were identified. They were detected in the extracts of all
genotypes. The results of quantitative analysis of these compounds are presented in Table 2. Peak with
retention time at 12.9 min, which was very small on the chromatogram recorded at 350 nm (Figure 1),
originated from the compound with the maximum absorption of UV spectrum at 226 and 279 nm
(data not shown). Based on these data and on comparison with the standard, the compound 1 was
identified as hydroxytyrosol. This phenolic compound and its derivatives (glucosides in particular)
were previously determined in olive leaves [8,15,21].

Figure 1. High-performance liquid chromatography (HPLC) separation of phenolic compounds of
olive leaf extract. (1) hydroxytyrosol; (2) luteolin glycoside 1; (3) verbascoside; (4) luteolin glycoside 2;
(5) luteolin 7-O-glucoside; (6) apigenin glycoside; (7) apigenin 7-O-glucoside; (8) luteolin 4′-O-glucoside;
(9) luteolin glycoside 3; (10) oleuropein; (11) luteolin glycoside 4; (12) quercetin.



Molecules 2019, 24, 1130 4 of 15

Table 2. Content of individual phenolic compounds in leaf extracts of different olive genotypes (mg/g).

No Compound Ascolana Ayvalik Cekiste Esek
Zeytini Gemlik Kilis

Yaglik Memecik Saurani Uslu

1 Hydroxytyrosol 2.32 ± 0.12 c 1.96 ± 0.10 d 3.38 ± 0.17 b 4.03 ± 0.20 a 2.52 ± 0.13 c 2.04 ± 0.10 d 2.10 ± 0.11 d 2.44 ± 0.12 c 1.33 ± 0.07 e

2 Luteolin glycoside 1 * 1.15 ± 0.06 c 1.15 ± 0.06 c 1.83 ± 0.09 a 0.76 ± 0.07 d 0.87 ± 0.04 d 1.89 ± 0.09 a 1.48 ± 0.04 b 0.89 ± 0.04 d 0.45 ± 0.02 e

3 Verbascoside 6.28 ± 0.24 c 0.72 ± 1.05 f 0.45 ± 0.12 f 4.89 ± 0.74 d 19.55 ± 0.98 b 21.07 ± 0.20 a 3.47 ± 0.17 e 3.25 ± 0.31 e 3.92 ± 0.16 de

4 Luteolin glycoside 2 * 0.84 ± 0.04 a 0.47 ± 0.02 c 0.37 ± 0.02 d 0.22 ± 0.01 ef 0.63 ± 0.03 b 0.51 ± 0.03 c 0.20 ± 0.01 f 0.67 ± 0.03 b 0.25 ± 0.01 e

5 Luteolin 7-O-glucoside 8.11 ± 0.41 a 7.43 ± 0.37 b 6.84 ± 0.34 b 5.69 ± 0.28 c 5.23 ± 0.26 cd 8.67 ± 0.43 a 4.96 ± 0.25 de 4.50 ± 0.23 e 3.23 ± 0.16 f

6 Apigenin glycoside ** 0.57 ± 0.03 ef 0.64 ± 0.03 d 0.88 ± 0.01 b 0.54 ± 0.03 f 1.48 ± 0.07 a 0.42 ± 0.02 g 0.77 ± 0.04 c 0.63 ± 0.03 de 0.38 ± 0.02 g

7 Apigenin 7-O-glucoside 0.20 ± 0.01 d 0.40 ± 0.02 b 0.21 ± 0.01 d 0.40 ± 0.02 b 0.59 ± 0.03 a 0.08 ± 0.04 e 0.18 ± 0.01 d 0.29 ± 0.01 c 0.18 ± 0.01 e

8 Luteolin 4′-O-glucoside 3.72 ± 0.19 a 3.64 ± 0.18 ab 3.57 ± 0.18 ab 3.54 ± 0.18 ab 2.08 ± 0.10 c 3.90 ± 0.20 a 3.39 ± 0.17 b 1.58 ± 0.08 d 1.89 ± 0.09 c

9 Luteolin glycoside 3 *** 2.98 ± 0.15 b 2.60 ± 0.13 c 3.61 ± 0.18 a 1.91 ± 0.10 e 1.92 ± 0.10 e 2.63 ± 0.13 c 2.28 ± 0.11 d 1.41 ± 0.07 f 1.27 ± 0.06 f

10 Oleuropein 57.6 ± 2.9 b 46.3 ± 2.3 c 38.5 ± 1.9 d 98.0 ± 4.9 a 23.1 ± 1.2 e 44.7 ± 2.2 c 38.2 ± 1.9 d 21.0 ± 1.0 e 22.2 ± 1.1 e

11 Luteolin glycoside 4 * 0.69 ± 0.03 a 0.54 ± 0.03 cd 0.51 ± 0.02 de 0.31 ± 0.02 f 0.50 ± 0.02 de 0.61 ± 0.03 b 0.59 ± 0.03 bc 0.49 ± 0.03 de 0.47 ± 0.02 e

12 Quercetin 1.92 ± 0.10 a 1.07 ± 0.05 c 0.63 ± 0.03 d 0.43 ± 0.02 e 0.47 ± 0.02 e 1.36 ± 0.07 b 1.86 ± 0.09 a 1.24 ± 0.06 bc 1.22 ± 0.06 bc

Data are expressed as mean ± standard deviation (n = 3) for extract of each genotype. Values in the same row having different letters differ significantly (p < 0.05). * Expressed as luteolin
7-O-glucoside. ** Expressed as apigenin 7-O-glucoside. *** Expressed as luteolin 4′-O-glucoside.
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The content of hydroxytyrosol in extracts ranged from 1.33 mg/g (‘Uslu’) to 4.03 mg/g
(‘Esek Zeytini’) (Table 2). Ortega–García and Peragón [12] reported greater variation in its content in
olive leaves of certain Spanish cultivars. In turn, hydroxytyrosol content determined in a ‘Moraiolo’
olive leaf extract was within the range noted in our study [22].

Compound 10 was identified as oleuropein by comparison of its chromatographic and
spectroscopic data to a standard. In the literature, the presence of oleuropein in olive leaves has
been described frequently [9,15,23]. In our study, oleuropein appeared as a major phenolic component
of the olive leaf extracts, although its content differed over a wide range among genotypes (Table 2).
Oleuropein was the most abundant in ‘Esek Zeytini’ (98.0 mg/g) followed by ‘Ascolana’ (57.6 mg/g)
extracts. The lowest content of oleuropein was determined in ‘Gemlik’, ‘Uslu’, and ‘Saurani’ extracts,
at 21.0–23.1 mg/g, which did not differ statistically (p ≥ 0.05). The results are in accordance with these
noted by Goldsmith et al. [19] for aqueous methanol and ethanol (50%, v/v) leaf extracts from olive
tree cultivars growing in Australia. In addition, methanolic extracts from ‘Koroneiki’ and ‘Chetoui’
contained oleuropein at a similar level of approximately 14–90 mg/g [15]. It has been commonly
reported that oleuropein is a major phenolic compound of olive leaves [9,22,24], although in several
studies, other phenolic compounds have been found to prevail [8,25].

Verbascoside (3) was identified in extracts based on a reference substance. This glycosylated
conjugate of caffeic acid and hydroxytyrosol was the second compound previously found
in olive leaves [9,14,23]. The related molecules (verbascoside isomers, hydroxyverbascoside,
metoxyverbascoside) were also detected in olive leaves using HPLC-MS/MS techniques [15,24].
The highest content of verbascoside was determined in ‘Kilis Yaglik’ extract (21.07 mg/g), but ‘Ayvalik’
and ‘Cekiste’ extracts contained as dramatic as 29.3- and 46.8-fold lower amounts of this compound,
respectively (Table 2). In addition to genotypic differences, other factors such as sampling time,
leaf age, and growing conditions affected the content of verbascoside in olive leaves [6,11]. In our
study, some of these factors were excluded: Trees were grown under the same soil and climatic
conditions and the leaves were collected within one month. Ryan et al. [7] reported that the partial
degradation of oleuropein is responsible for the formation of verbascoside in olive peel and pulp.
However, this observation did not apply to the leaf extracts of analysed genotypes. A statistically
significant correlation between the content of verbascoside and oleuropein was not found (data
not shown).

Compounds 2, 4–9, and 11–12 were classified as flavonoids belonging to the subclass of flavones
and flavonols. Among flavones, luteolin 7-O-glucoside (5), apigenin 7-O-glucoside (7), and luteolin
4′-O-glucoside (8) were identified by comparison to standards. The structures of compounds 2, 4, 6, 9,
and 11 were not full identified, but were tentatively included to luteolin glycosides (2, 4, 9, and 11) and
apigenin glycoside (6) based on shorter retention times than corresponding aglycons and the similarity
of the shape and maxima of UV spectra to that of the aglycon [26]. The presence of several glycosides
of luteolin and apigenin in olive leaves has been described in the literature [15,21,25]. In addition to
luteolin 7-O-glucoside, apigenin 7-O-glucoside and luteolin 4′-O-glucoside, luteolin glucoside isomers,
luteolin diglucoside isomers, luteolin 7-O-rutinoside and its isomers, and apigenin 7-O-rutinoside
were noted. The luteolin and apigenin were not detected in our study, although both compounds
were previously determined in olive leaves [17,25]. Luteolin 7-O-glucoside was the main flavone
identified in the extracts of all genotypes (Table 1). The amount of luteolin 4′-O-glucoside and luteolin
glycoside 3 was noted in ranges 1.58–3.90 and 1.27–3.61 mg/g, respectively. In turn, the content
of apigenin 7-O-glucoside, luteolin glycoside 2 and luteolin glycoside 4 did not exceed 1 mg/g of
the extract of any genotype. The luteolin 7-O-glucoside was previously reported as the dominant
flavonoid of olive leaf extracts [17,27]. The extracts of ‘Kilis Yaglik’ and ‘Ascolana’ were the richest
source of flavones, and ‘Uslu’ contained the lowest amount of these compounds (Table 2). However,
the genotypic differences in the content of flavonoids were smaller than the abovementioned variations
in the content of verbascoside and oleuropein.
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Compound 12 represented the subclass of flavonols. It was identified as quercetin by comparison
of its chromatographic and spectroscopic data to a reference substance. Its content was low in olive
leaf extracts (Table 2), consistent with literature data [17].

2.3. Antioxidant Activity of Olive Leaf Extracts

The olive leaf extracts were evaluated for their DPPH• and ABTS•+ scavenging activities, for their
abilities to reduce ferric ions and to inhibit the oxidation of a model emulsion with β-carotene and
linoleic acid.

Antiradical activity against ABTS•+ expressed as TEAC is presented in Table 1. Olive leaf extracts
of ‘Esek Zeytini’ and ‘Kilis Yaglik’ genotypes showed the highest activity with values that did not
differ statistically (p ≥ 0.05)—1.01 mmol Trolox/g. The lowest ABTS•+ scavenging activity was
exhibited by ‘Uslu’ extract (0.70 mmol Trolox/g). A similar trend was observed for ferric-reducing
antioxidant power (FRAP) (Table 1). Again, extracts of ‘Esek Zeytini’ and ‘Uslu’ characterised the
highest (2.12 mmol Fe2+/g) and lowest (1.04 mmol Fe2+/g) values, respectively. The ability by other
genotypes to reduce ferric ions decreased in the order: ‘Esek Zeytini’ > ‘Kilis Yaglik’> ‘Ayvalik’ =
‘Ascolana’ > ‘Memecik’ > ‘Cekiste’ = ‘Gemlik’ > ’Saurani’ > ‘Uslu’. The two-fold differences in FRAP
values and 1.5-fold differences in TEAC obtained for olive leaf extracts from Turkish genotypes
(Table 1) were similar to those noted for cultivars growing in other countries, that is, Greece and
Italy [20,28]. The significant correlation (p < 0.01) between the FRAP and TEAC of extracts of olive leaf
genotypes with a correlation coefficient r = 0.789 was found (Table 3). The results of both antioxidant
assays were also strongly correlated with TPC (Table 3). Linear correlations between TPC, TEAC,
and FRAP were previously noted in the literature for samples of various cultivars of olive leaves [28]
and other plant materials [29,30]. Benavente–García et al. [9] determined the ABTS•+ scavenging
activity of pure compounds typical of olive leaves. TEAC of hydroxytyrosol was 1.57 mM. Activities of
oleuropein and luteolin 7-O-glucoside were approximately 50% lower. In turn, TEAC of verbascoside
and apigenin 7-O-glucoside was 1.02 and 0.42 mM. Considering this information and the content
of these compounds in the analysed extracts (Table 2), it can be assumed that apart from apigenin
7-O-glucoside, the remaining compounds could contribute to the ABTS•+ scavenging activity of
olive leaf extracts. Indeed, the contents of oleuropein and luteolin 7-O-glucoside were significantly
correlated with TEAC (Table 3). Additionally, significant correlations were found between contents of
these compounds and FRAP and TPC. TEAC, FRAP and TPC were also correlated with the content
of luteolin 4′-O-glucoside (Table 3), although, due to its chemical structure, this compound is a less
efficient radical scavenger than luteolin and its 7-O-glucoside [21].

Table 3. Pearson’s correlation coefficients (r) between total phenolic content (TPC), individual phenolic
compound contents and antioxidant activities of olive leaf extracts of different genotypes.

TPC TEAC FRAP DPPH (EC50) Emulsion Oxidation a

Hydroxytyrosol 0.614 0.555 0.461 −0.225 0.369
Luteolin glycoside 1 0.359 0.518 0.395 −0.190 0.525

Verbascoside 0.043 0.303 0.218 −0.363 −0.018
Luteolin glycoside 2 0.179 0.107 −0.014 −0.148 0.352

Luteolin 7-O-glucoside 0.669 * 0.666 * 0.728 * −0.570 0.903 **
Apigenin glycoside 0.040 0.201 −0.204 0.117 −0.186

Apigenin 7-O-glucoside 0.227 0.252 −0.014 −0.171 −0.186
Luteolin 4′-O-glucoside 0.689 * 0.699 * 0.833 ** −0.544 0.846 **

Luteolin glycoside 3 0.464 0.552 0.436 −0.095 0.806 **
Oleuropein 0.744 * 0.664 * 0.836 ** −0.674 * 0.608

Luteolin glycoside 4 −0.004 −0.149 0.024 −0.049 0.380
Quercetin −0.104 −0.480 −0.024 −0.059 0.140

TPC 1 0.746* 0.885 ** −0.824 ** 0.737 *
TEAC 1 0.789 ** −0.676* 0.582
FRAP 1 −0.873 ** 0.748 *

DPPH (EC50) 1 −0.485
a Non-oxidized β-carotene after 180 min of reaction. * Correlation is significant at p < 0.05. ** Correlation is
significant at p < 0.01.
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DPPH• scavenging activity of olive leaf extracts is shown in Figure 2a. The highest antiradical
activity towards DPPH• was noted for ‘Esek Zeytini’ and ‘Kilis Yaglik’. The EC50 of extracts
of these genotypes and additionally of ‘Ayvalik’ did not differ significantly from each other
(p ≥ 0.05) and amounted to 0.037–0.040 mg/mL. In turn, ‘Cekiste’ and ‘Uslu’ had the highest
EC50 (0.060–0.063 mg/mL). Stanković et al. [18] reported comparable DPPH• scavenging activity
of extracts of olive leaves from Tunisia, Malta, and Montenegro but higher IC50 values for French
and Serbian samples, that is, 113.30 and 94.39 µg/mL, respectively. In our study, the EC50 values
of analysed genotypes significantly correlated with TPC (r = −0.824; p < 0.01) and with results of
ABTS assay (r = −0.676, p < 0.05) and FRAP assay (r = −0.873, p < 0.01) (Table 3). A strong correlation
between phenolic content determined HPLC method and DPPH• scavenging activity with notably
high correlation coefficient (r = −0.953, p < 0.05) was previously found for the leaves of olive trees
cultivars growing in Spain [14]. Goulas et al. [21] established that secoiridoids (primarily oleuropein)
were responsible for 15–51% of the DPPH• scavenging activity of olive leaf extracts. The contribution
of hydroxytyrosol and flavonoids (primarily luteolin 7-O-glucoside) to the total activity was also
noticeable (up to 32% and 27%, respectively). Verbascoside comprised a smaller share of the overall
antiradical activity towards DPPH•, 3–18%. However, the response of individual compounds highly
varied with olive cultivar and sampling period. Our results showed that only the content of oleuropein
correlated with EC50 values (Table 3). The contribution other compounds of olive leaf extract to DPPH•

scavenging activity was not so directly related to their content by genotypes.

Figure 2. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (a) and antioxidant activity
in the β-carotene-linoleic acid emulsion (b) of olive leaf extracts. Data are expressed as mean± standard
deviation (n = 4) for extract of each genotype. Bars having different letters differ significantly (p < 0.05).
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The antioxidant activity of olive leaf extracts in the β-carotene-linoleic acid emulsion is presented
in Figure 2b. Notably, the variation of extracts obtained from different genotypes in terms their ability
to inhibit the emulsion oxidation was lower than observed in other assays. After 180 min of oxidation,
49.9% to 59.5% of β-carotene remained non-oxidised. All extracts had lower antioxidant activity than
synthetic antioxidant BHA. A strong correlation between the antioxidant activity of olive leaf extracts in
the β-carotene-linoleic acid emulsion and the content of some luteolin derivatives in extracts (luteolin
7-O-glucoside, luteolin 4′-O-glucoside, luteolin glycoside 3) was found (Table 3). The correlation with
oleuropein content was statistically nonsignificant (p = 0.082).

2.4. Chemometric Analysis

The effects of genotypes on the phenolic compound distribution and antioxidant activity of nine
olive genotypes were compared using GGE biplot analysis (Figure 3). The data obtained for the 12
phenolic compounds, four antioxidant assays, and TPC were subjected to analysis. The GGE biplot
“which-won-where/what” shows a polygon view with some genotypes as vertices [31]. Perpendicular
lines are drawn for each side of the polygon, and the biplot was divided into sectors. The vertex
genotypes are the most responsive and are either best or poorest for one or all characteristics in each
sector. In our study, five genotypes, ‘Ascolona’, ‘Kilis Yaglik’ ‘Esek Zeytini’, ‘Gemlik’, and ‘Uslu’ were
located at a vertex of the polygon, and five sectors were obtained (Figure 3a). ‘Uslu’ and ‘Saurani’
were in the same sector and ‘Uslu’ was distinct from the other genotypes, given the high EC50 value
of the DPPH assay. ‘Gemlik’ and ‘Esek Zeytini’ were best for the most characteristics: FRAP, TPC,
TEAC and content of hydroxytyrosol, oleuropein, apigenin 7-O-glucoside, and apigenin glycoside.
‘Esek Zeytini’ had the highest vector in its respective direction. The vector length and direction
represents the extension of genotype response to the treatments [32]. ‘Kilis Yaglik’ differed from
other vertex genotypes with respect to luteolin glycosides 1 and 3, luteolin 7-O-glucoside, luteolin
4′-O-glucoside, verbascoside, and the ability to inhibit emulsion oxidation. The ‘Ascolona’ and
‘Memecik’ fall in the same sector and were best for quercetin and luteolin glycosides 2 and 4.

Figure 3. “Which-won-where/what” (a) and “average tester coordination” (b) views of GGE
biplot. (1) hydroxytyrosol; (2) luteolin glycoside 1; (3) verbascoside; (4) luteolin glycoside 2;
(5) luteolin 7-O-glucoside; (6) apigenin glycoside; (7) apigenin 7-O-glucoside; (8) luteolin 4′-O-glucoside;
(9) luteolin glycoside 3; (10) oleuropein; (11) luteolin glycoside 4; (12) quercetin. As: ‘Ascolona’;
Ay: ‘Ayvalik’; C: ‘Cekiste’; E: ‘Esek Zeytini’; G: ‘Gemlik’; K: ‘Kilis Yaglik’; M: ‘Memecik’; S: ‘Saurani’;
U: ‘Uslu’.

The “average tester coordination” view of the GGE biplot is presented in Figure 3b. This graph
visualises the interrelationship among characteristics. The close positive associations between TPC,
TEAC, FRAP, and the content of hydroxytyrosol and oleuropein are shown. Moreover, antioxidant
activity in the emulsion system were strongly related to luteolin 4′-O-glucoside, luteolin 7-O-glucoside
and luteolin glycosides 1 and 3, but poorly related to oleuropein. The last two observations agreed
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well with the results of the correlation analysis (Table 3) with the exception of hydroxytyrosol in the
first case and luteolin glycoside 1 in the second.

A hierarchical cluster analysis of olive genotypes was performed using data from phenolic
compound contents and antioxidant activities. Three distinct clusters (C1–C3) were formed with
similarity greater than 60% in each group (Figure 4). The mean values of variables for clusters
are present in Table 4. The C1 included four genotypes, ‘Ascolana’, ‘Ayvalik’, ‘Kilis Yaglik’,
and ‘Esek Zeytini’, associated with a high TPC and content of hydroxytyrosol, verbascoside, oleuropein
and luteolin derivatives (luteolin 7-O-glucoside, luteolin 4′-O-glucoside, luteolin glycosides 2 and 4),
as well as with high antioxidant activity, which may be explained by the presence of the mentioned
compounds. C2 consisted of ‘Saurani’ and ‘Uslu’ and had the lowest antioxidant activities, TPC,
and content of most individual phenolic compounds. The similarity between genotypes and their
differentiation from others was consistent with the GGE biplot (Figure 3). Three genotypes (‘Gemlik’,
‘Memecik’ and ‘Cekiste’) were included in C3 (Figure 4). This group was distinguished by the highest
content of hydroxytyrosol, apigenin derivatives and two luteolin glycosides, with fairly high TEAC
and low DPPH• scavenging activity. Previously, hierarchical clustering based on phenolic compound
contents and the antioxidant activities of leaves was successfully used to classify cultivars of blueberry
or various spices [33,34].

Figure 4. Dendrogram of hierarchical cluster analysis of olive genotypes for data of phenolic compound
contents and antioxidant activity of olive leaf extracts. As: ‘Ascolona’; Ay: ‘Ayvalik’; C: ‘Cekiste’;
E: ‘Esek Zeytini’; G: ‘Gemlik’; K: ‘Kilis Yaglik’; M: ‘Memecik’; S: ‘Saurani’; U: ‘Uslu’.

3. Materials and Methods

3.1. Plant Material

Leaves from olive trees (Olea europaea L.), nine genotypes, were obtained from the Olive Research
Institute (Izmir, Turkey). The trees of each genotype were grown under the same soil and climatic
conditions at the Station of Olive Growing in Bornova. The leaves of ‘Ayvalik’, ‘Cekiste’, ‘Esek Zeytini’,
‘Gemlik’, ‘Kilis Yaglik’, ‘Memecik’, ‘Saurani’, and ‘Uslu’ genotypes, which originated from Turkey,
and of ‘Ascolana’, originating from Italy, were collected in May. Fresh leaves were transported to the
laboratory, air-dried under ambient temperature, and finally pulverised in a mortar to particles with
sizes < 0.8 mm.
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Table 4. Mean values of variables for genotype clusters obtained by hierarchical cluster analysis.

Cluster
No.

1 2 3 4 5 6 7 8 9 10 11 12 TPC
(mg GAE/g)

TEAC
(mmol TE/g)

FRAP
(mmol Fe2+/g)

DPPH EC50
(mg/mL)

Emulsion Oxidation
(%)(mg/g)

C1 2.69 1.24 14.02 0.51 7.48 0.54 0.27 3.70 2.53 61.63 0.54 1.20 242.83 0.96 1.92 0.107 56.98
C2 1.89 0.67 3.59 0.46 3.87 0.51 0.24 1.74 1.34 21.54 0.48 1.23 153.55 0.72 1.14 0.113 50.75
C3 2.67 1.39 7.82 0.40 5.68 1.04 0.33 3.01 2.60 33.29 0.53 0.99 204.69 0.91 1.50 0.118 53.73

(1) hydroxytyrosol; (2) luteolin glycoside 1; (3) verbascoside; (4) luteolin glycoside 2; (5) luteolin 7-O-glucoside; (6) apigenin glycoside; (7) apigenin 7-O-glucoside; (8) luteolin 4′-O-glucoside;
(9) luteolin glycoside 3; (10) oleuropein; (11) luteolin glycoside 4; (12) quercetin; C1–C3: genotype clusters presented in Figure 4; GAE: gallic acid equivalents. TE: Trolox equivalents.
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3.2. Chemicals and Reagents

Folin-Ciocalteu’s phenol reagent, gallic acid, 2,2-diphenyl-1-picrylhydrazyl (DPPH),
2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,4,6-tri(2-pyridyl)-s-triazine
(TPTZ), 6-hydroxy-2,5,7,8-tetramethyl-chroman-2-carboxylic acid (Trolox), β-carotene, linoleic acid,
butylated hydroxyanisole (BHA), trifluoroacetic acid (TFA) and quercetin were obtained from
Sigma-Aldrich (St. Louis, MO, USA). Hydroxytyrosol, verbascoside, oleuropein, luteolin 7-O-glucoside,
luteolin 4’-O-glucoside and apigenin 7-O-glucoside were purchased from Extrasynthese S.A.
(Genay, France) Solvents and other chemicals, if not otherwise specified, were acquired from Avantor
Performance Materials (Gliwice, Poland).

3.3. Extract Preparation

Powdered olive leaves were suspended in methanol-water (4:1, v/v) solution in a 1:10 (v/w)
ratio of sample to extractant [25]. The bottles with suspensions were placed in a shaking water
bath (SW22, Julabo, Seelbach, Germany) heated to 65 ◦C. Extraction was performed three times for
15 min. Filtrates obtained after each step of the process were combined, and organic solvent was
evaporated using a Rotavapor R-200 (Büchi Labortechnik, Flawil, Switzerland). The aqueous residue
was lyophilised (Lyph Lock 6 freeze-dry system, Labconco, Kansas City, MO, USA).

3.4. Determination of Total Phenolic Compound Content

The TPC of olive leaf extracts was determined by reaction with Folin-Ciocalteu’s phenol reagent
and absorbance measurement at 725 nm (DU-7500 spectrophotometer, Beckman Instruments, Brea,
CA, USA) [35]. The TPC was expressed as mg gallic acid equivalents (GAE) per g of extract.

3.5. Phenolic Compounds Analysis

The phenolic compounds of extracts were separated using a Shimadzu HPLC system (Kyoto,
Japan) consisting of two LC-10ADVp pumps, an SCL-10AVp system controller, and an SPD-M10AVp

photodiode array detector (PAD). A Luna C18 column (250× 4.6 mm, 5 µm, Phenomenex, Torrance, CA,
USA) was connected to the system. The mobile phase consisted of acetonitrile-water-TFA (5:94.9:0.1,
v/v/v) [solvent A] and acetonitrile-TFA (99.9:0.1, v/v) [solvent B] and was injected onto the column
with a flow rate of 1 mL/min in a gradient system from 5 to 40% of solvent B from 0–40 min.
The injection volume was 20 µL of extract solution in methanol (10 mg/mL). The PDA scanned
over a wavelength range of 200 to 400 nm. The individual phenolic compounds were identified based
on comparison of their retention times and UV spectra with corresponding standards. The calibration
curves of standards were used to quantify compounds. The hydroxytyrosol and oleuropein were
determined at 280 nm, verbascoside at 320 nm and flavonoids at 350 nm.

3.6. Determination of Trolox Equivalent Antioxidant Capacity

An ABTS assay was conducted to determine the TEAC of the extracts. ABTS•+ was generated,
and the reaction was performed exactly according to the procedure of Re et al. [36]. The absorbance of
reaction mixtures was measured at 734 nm. The results were expressed as mmol Trolox equivalents
(TE) per g of extract.

3.7. Determination of DPPH Radical Scavenging Activity

The scavenging activity of olive leaf extracts towards DPPH• was determined according to the
method described by Brand-Williams et al. [37]. Briefly, the portions of 2 mL of methanol were
vortexed with methanolic solutions of DPPH (0.25 mL, 1 mM) and extracts (0.1 mL, 0.5–2.5 mg/mL).
The reaction was conducted in the dark for 20 min, and the absorbance was measured at 517 nm.
The curves of percent of absorbance versus extract content in the reaction mixture were plotted.
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EC50 values, defined as the concentration of extract needed to scavenge 50% of the initial DPPH•,
were estimated from the plots.

3.8. Determination of Ferric-Reducing Antioxidant Power

The Benzie and Strain [38] method was used to determine FRAP of extracts. The FRAP reagent
was prepared by mixing 10 mM TPTZ in 40 mM HCl (6 mL) with 300 mM acetate buffer at pH
3.6 (60 mL) and 20 mM ferric chloride (6 mL). Next, 75 µL of the extract solution and 225 µL of
deionised water were added to 2.25 mL of FRAP reagent. The absorbance was measured at 593 nm
after incubation of mixtures at 37 ◦C for 30 min. The results were expressed as mmol Fe2+ equivalents
per g of extract based on the calibration curve prepared from ferrous sulphate.

3.9. β-Carotene-Linoleic Acid Emulsion Oxidation

The antioxidant activity of olive leaf extracts was evaluated using a β-carotene-linoleic acid model
system [39]. The emulsion of linoleic acid and β-carotene in water was stabilised with Tween 40.
The emulsion was oxidised in a 96-well plate [29]. Portions of the emulsion (250 µL) were vortexed
with 20 µL of extract solution (1 mg/mL) or BHA (0.5 mg/mL). Methanol was added to the control
sample. The plate was placed in an Infinite M1000 microplate reader (Tecan, Männedorf, Switzerland)
heated to 42 ◦C. The absorbance was measured at 470 nm at 15-min intervals. The results were
expressed as the percentage of non-oxidised β-carotene after 180 min of reaction.

3.10. Statistical Analysis

At least three analytical replications were conducted for antioxidant activity assays and HPLC
analyses. The analysis of variance (one-way ANOVA) was followed by the least significant difference
(LSD) test. Differences were considered to be statistically significant when p < 0.05. Hierarchical cluster
analysis based on Ward’s method [40] was performed. The statistical package of MSTAT-C software
was used. A simple relationship between variables for genotypes were calculated as the Pearson
correlation (GraphPad Prism software, GraphPad Software Inc., La Jolla, CA, USA). The GGE biplot
analysis was performed according to Yan and Rajcan [31]. Graphs were generated using the software
GGE Biplot Package.

4. Conclusions

The aqueous-methanolic extracts obtained from olive leaves of eight Turkish and one Italian
genotypes contained compounds belong to the secoiridoids, phenylethanoids and flavonoids.
In the present study, 12 compounds were identified and quantified. Oleuropein dominated in
all extracts. Several genotypes were also good sources of hydroxytyrosol, verbascoside, luteolin
7-O-glucoside and luteolin 4′-O-glucoside. The content of verbascoside varied in the widest
range among extracts. In addition to the content of analysed individual compounds, also TPC,
DPPH•, and ABTS•+ scavenging activities, FRAP, and antioxidant activity in β-carotene-linoleic
acid emulsion differed significantly among genotypes. Significant correlations were found between
TPC and results of antioxidant assays. In the case of individual phenolic compounds, TPC, FRAP,
and TEAC were correlated with the content of oleuropein when all genotypes were considered and
associated with the content of hydroxytyrosol for part of genotypes. In turn, the ability to inhibit
emulsion oxidation strongly correlated with the content of luteolin derivatives (luteolin 7-O-glucoside,
luteolin 4′-O-glucoside and luteolin-glycoside 3). In general, the compounds mentioned above made
the strongest contribution to the antioxidant activity of olive leaves.

The hierarchical cluster and GGE biplot analyses also indicated that the profile of phenolic
compounds of leaf extracts and their antioxidant activities had reference values for the classification
of olive genotypes. Several genotypes had high TEAC, FRAP, and TPC; others were more active in
the β-carotene-linoleic acid emulsion. In general, extracts of ‘Esek Zeytini’ and ‘Kilis Yaglik’ were
the best in respect of phenolic compound content and antioxidant activity. Only a small number of
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genotypes (‘Saurani’ and ‘Uslu’) were characterised by lower activity and lower content of the primary
compounds. These differences can determine the potential applications of leaves of appropriate olive
genotypes as a source of bioactive compounds in food, cosmetics, and pharmaceutical products.
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29. Orak, H.H.; Karamać, M.; Orak, A.; Amarowicz, R. Antioxidant potential and phenolic compounds of some
widely consumed Turkish white bean (Phaseolus vulgaris L.) varieties. Pol. J. Food Nutr. Sci. 2016, 66, 253–260.
[CrossRef]
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