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ABSTRACT

In this research, a prototype downdraft throatless gasifier was designed with a mechanical stirrer. The gasifier was 
designed for gasification of rice straw pellets. The diameter of the reactor was 350 mm and a nominal value for the 
heat power of biomass input was 70 kW. Rice straws which were collected from Thrace Region of Turkey gasified for 
determination of the designed gasifier performance in Namik Kemal University Biosystem Engineering Laboratories. 
The effects of airflow path and stirring process on the gasification efficiency during the gasification process were 
investigated. Temperatures and airflow rates observed and adjusted by controlling the air flow rate in the automation 
system constantly. Pellets were gasified using two different airflow paths with the same equivalence ratio of 0.2 and these 
were compared. Air inlet from the top showed better results than air inlet from tuyeres. For the air inlet from the top, the 
higher heating value of producer gas was determined as 5.047 MJ Nm-3 and cold gas efficiency was calculated as 65.4%. 
H2/CO ratio was found as 1.385 which was higher than the air inlet from tuyeres.
Keywords: Biomass gasification; Rice straw; Stirrer; Throatless; Downdraft; Gasifier design
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1. Introduction
One of the most controversial topics in the world 
is global climate change caused by CO2 emissions. 
Therefore, greener energy sources have become 
significant alternatives to current energy resources 
and the number of the works being carried out on 
renewable energy has increased in current years. 
Biomass is one of the renewable energy sources 

which inspires interest for researchers (Anis & 
Zainal 2011). Fossil fuel resources are gradually 
decreasing causing the cost of petroleum-based 
products to increase. This problem imposes a need 
for an equipment that can produce an alternative 
source of fuel (Manguiat et al 2015). Biomass 
gasification occurs as a thermochemical process to 
produce gaseous fuel from carbonaceous feedstock 
which are included but not limited to pinewood, 
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eucalyptus wood, wheat straw, rice straw, rice 
husk, corn cob, corn stalk, sugarcane bagasse, 
poplar, hazelnut shell, coconut shell, switch grass, 
olive husk and so on (Demirbas 2004; Mondal et al 
2011; Nwokolo et al 2016). Producer gas consists 
of carbon monoxide, hydrogen, carbon dioxide, 
methane, traces of higher hydrocarbons, such as 
ethane and ethylene, water vapor, nitrogen (if air 
is the oxidizing agent), and various contaminants, 
such as small char particles, ash, tar and oil (Basu 
2013).

A review of the 50 gasifier manufacturers in 
Europe, United States, Canada showed that 75% 
of the designs were downdraft fixed beds while 
fluidized beds, updraft fixed beds and the other 
designs were 20%, 2.5%, 2.5%, respectively (Balat 
et al 2009; Zhang et al 2015).

Ma et al (2012) presented a systematic design 
and experimental results of a 190 kWe biomass fixed 
bed gasification and poly-generation pilot plant 
using a double air stage downdraft approach. They 
used a mechanical stirrer, secondary air supply, and 
wood chips as feedstock. It was reported that due to 
the secondary air supply, an enhanced tar cracking 
was achieved by increasing the temperature as 
high as 900 °C in the oxidation zone. Bridging and 
channelling were avoided by the use of both stirrer 
and reciprocating grate. In their research, the stirrer 
was placed in the drying zone of the reactor. The 
difference of our work is that the stirrer was placed 
in the combustion zone of the reactor.

Jain & Goss (2000) designed and fabricated 
four open core throatless batch fed rice husk 
gasifier reactors having internal diameters of 15.2, 
20.3, 24.4 and 34.3 cm. Each reactor connected to 
a gas cleaning unit was tested for its performance 
characteristics. On each reactor, ten trial runs were 
conducted by varying the air flow rate or specific 
gasification rate. An experimental investigation in 
a downdraft gasifier was carried out by Striūgas 
et al (2014). They used different types of fuel and 
waste for a comparison of process performances and 
estimation of the potential to gasify various feedstock 
types in a single fully automated device. A number 

of different feedstock, including wood chips, pellets 
from wood, rape straw, poultry litter, dried sewage 
sludge and their mix with wood, were used for the 
investigation. The process efficiencies associated 
with the gasification of various feedstock and the 
effect of process parameters, such as temperature, 
pressure drop of a bed, product composition and 
output on the process were reported.

A review article on biomass gasification 
models for downdraft gasifier has recently been 
contributed by Patra & Sheth (2015). In the review, 
the importance of modeling for biomass gasification 
was explained and different models available for 
downdraft gasifiers were discussed and evaluated. 
The main focus was the equilibrium models for both 
fluidized bed and downdraft gasifiers.

In a typical design of the downdraft reactor, the 
biomass is fed from the top of the reactor and moves 
downwards as a result of its conversion and the 
removal of ashes through a grate at the bottom of the 
reactor. The literature review shows that gasification 
of different biomass in downdraft gasifiers entails 
certain difficulties with a lack of literature about 
the gasifier with a mechanical stirrer. Therefore, 
the main objective of this study was to perform 
experimental investigations of gasification process 
in the designed prototype downdraft gasifier using 
rice straw pellets to determine process performance 
and estimate the feasibility of gasification of pure 
rice straw pellets.

2. Material and Methods
In this research, a prototype gasifier system with an 
overhead controlled mechanical stirrer was designed 
for rice straw pellets gasification. In this section, 
biomass characteristics, experimental setup, and 
experimental procedure will be explained.

2.1. Biomass characteristics
Rice straws collected from Thrace Region of Turkey 
were pelleted in a firm located in Tekirdağ. Mean 
diameter of pellets was 6.2 mm and the mean 
length was 53.6 mm. Mean bulk density (ρb) and 
unit density (ρu) values of pellets were 562.3 kg m-3 
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and 1226.4 kg m-3, respectively (EN 15103 - 2009). 
Table 1 shows proximate analysis results for dry 
basis, original basis, and ultimate analysis results.

Table 1- Proximate and ultimate analysis of rice 
straw

Proximate analysis (%, wt)
Original Dry Standard (ASTM D)

Moisture  7.01 - 7582-12
Volatile matter 61.61 66.25 7582-12
Fixed carbon 14.18 15.24 3172-13
Ash 17.21 18.50 1755-01
Ultimate analysis (%, wt) Standard (ASTM D)
C 39.90 5373-14
H  4.89 5373-14
O 35.27 3176-09
N  1.24 5373-14
S  0.20 4239-14

Determined lower heating value of biomass 
pellets (LHVF) for original basis and dry basis were 
12.77 MJ kg-1 and 13.90 MJ kg-1, respectively. Also, 
the higher heating values (HHVF) were 13.84 MJ 
kg-1 original basis and 14.89 MJ kg-1 for dry basis 
(ASTM D 5865-13). First deformation temperature, 
softening temperature and hemisphere temperature 
(ASTM D 1857/D1857) were 1045 °C, 1239 °C, 
and 1436 °C, respectively. A sample of rice straw 
pellets used in this study as biomass fuel is shown 
in Figure 1.

2.2. Experimental setup

A downdraft biomass gasifier was designed 
for rice straw pellet gasification. Characteristic 
parameters of the design are given in Table 2. Air 
was used as gasification agent. Design of gasifier 
allowed working with two different airflow inlets; 
from the top and from the tuyeres. An overhead 
activated mechanical stirrer was added to the reactor 
to determine the effects of stirring.

Table 2- Characteristic parameters of the designed 
gasifier

Type of reactor Fixed bed, downdraft, throatless
Diameter 350 mm
Refractor layer Yes (50 mm)
Tuyeres 10 items (Diameter 7.8 mm)
Fuel feeding Manual (Batch type)
Grid No
Ash removal Semi-automatic control (HMI panel)
Fuel 
consumption

19±1 kg h-1 (for SGR 200±10 kg h-1 

m-2) 
Power input 
(biomass) 70 kW (for FCR 20 kg h-1)

Experimental setup consisted of gasifier 
reactor, cyclone, gas cooling unit and condensation 
tank, vacuum pump and service water tank, flare 
unit, measurement and control components, gas 
chromatography device and its components. General 

     
Figure 1- Rice straw pellets
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view of the system is shown in Figure 2 and flow 
chart is given in Figure 3.

Figure 2- General view of gasifier system

2.2.1. Gasifier

The stratified design has some advantages over 
the throated design. The cylindrical construction 
is easy to manufacture and allows continuous flow 
of troublesome fuels without causing bridging and 
channeling (Reed & Das 1988).

The diameter of the reactor (DR) was calculated 
by using Equation 1 and determined as 0.350 
m. Specific gasification rate (SGR) and fuel 
consumption rate (FCR) were assumed as 200 kg 
m-2 h-1 (Jain 2006) and 20 kg h-1, respectively. Other 
main dimensions of reactor body are shown in 
Figure 4.
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Minimum height of the reactor (HR) needed was 
calculated from Equation 2 and determined as 0.74 
m for the operation lasting two hours. It was taken 
0.84 m for safety.
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rate. Data monitoring and system control were 
operated by PLC and HMI control panel.
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3 pressure transmitters were used in the system. 
P1 was placed under the cover part of reactor body, 
P2 on gas exit pipe and P3 on the pipe after cooling. 
The measurable range of selected transmitters was 
±1 bar.

The flow rate for the producer gas was measured 
by an orifice flow meter which had its own indicator 
with LED screen. It was suitable for the temperatures 
up to 200 °C. Air flow rate was also measured by 
an orifice flow meter that works together with a 
pressure differential transmitter.

Power of electric motor vacuum pump was 
1.5 kW and it was controllable by an inverter. 
Additionally, three more motors were used to 
activate the stirrer, ash removal helix, and cooler 
fan. Each of these three components had the power 
of 0.55 kW. The stirrer motor was also controlled 
by an inverter. All on/off and invertor controls of 
the motors were on the control panel. Control panel 
included shelters, PLC modules, and HMI. HMI 
was 7” and connected to a computer via Ethernet. 
The data was stored via USB port.

2.2.3. Gas analysis
Agilent 7890B GC model gas chromatography device 
was used to analyze the composition of producer 
gas. CO, H2, CH4, CO2 and N2 concentrations 
were determined as volumetric percentages. In 
the experiments, 3 gas examples were taken in 
one experiment cycle time for each airflow path. 
One experiment cycle lasted for 1-1.5 hours. Gas 
sampling line was separated from the main line after 
flow measurement. High-purity argon gas was used 
as a gas carrier for sampling process.

2.3. Experimental procedure
The experiments were done for two different airflow 
paths with the same equivalence of ratio 0.2. The 
airflow paths that explained below are shown in 
Figure 7.

Airflow path 1 (AFP_1): Air comes into the 
reactor from the top, passing through the biomass 
bed, arrives reacting and inert char zones and leaves 
gasifier.

Figure 7- The airflow paths used in experiments

Airflow path 2 (AFP_2): Air comes into the 
reactor from the tueyers, moves through the 
oxidation and reduction zones and leaves gasifier.

2.3.1. Preparation
Collector was filled up to the grid level with char-
ash mixture remained from previous applications. 5 
kg pellets were placed on this char bed and fired by 
the help of some wood pieces. For the first step, both 
air inlets were kept open. When the flames arrived at 
the top level, 25 kg fuel was loaded into the reactor 
and the cover was closed. According to selected air 
path and airflow rate, air inlets were adjusted by the 
valves and inverter controls on HMI screen panel. 
After setting was completed, the experiment started.

The experiments’ finish times were determined 
by observation of the flame level of the reactor. 
The observation was made by opening the valve 
on the biomass storage bunker. The finish times of 
experiments were obtained when the flame arrived 
at the top level of loaded biomass. During the 
experiment, parameters such as time, temperatures, 
pressures and flow rates were observed on the screen 
of the control panel and the data was recorded via a 
USB port on the panel.

The stirrer was activated when the temperature 
exceeded 800 °C. In other cases, the stirrer was not 
activated. The reactor was also tested without the 
stirrer by disassembly of the stirrer from the reactor.



A Prototype Downdraft Gasifier Design with Mechanical Stirrer for Rice Straw Gasification and Comparative..., Dalmış et al

Ta r ı m  B i l i m l e r i  D e r g i s i  –  J o u r n a l  o f  A g r i c u l t u r a l  S c i e n c e s        24 (2018) 329-339 335

2.3.2. Calculations
Stoichiometric ratio (SR): Stoichiometric air needed 
for full combustion was calculated according to 
ultimate analysis results by Equation 4 (Zhu & 
Venderbosch 2005). CC, CH, CO and CA mean the 
percentages of carbon, hydrogen, oxygen, and 
ash respectively given with ultimate analysis of 
biomass. SR value was determined as 3.856 kg air 
for 1 kg fuel.
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𝑆𝑆𝑆𝑆 = (𝐶𝐶𝐶𝐶
12 + 𝐶𝐶𝐻𝐻

4 − 𝐶𝐶𝑂𝑂
32) ∙ (1 + 79

21) ∙ (1 − 𝐶𝐶𝐴𝐴
100) ∙ 28.84

100                                                                                       (4) 
 

   (4)

FCR (kg h-1) was calculated by Equation 5. The 
term mB is defined as the mass of biomass fuel (kg) 
for one experiment and t is the measured experiment 
time (h).
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3.1. Gas compositions

Gas compositions and calculated lower and 
higher heating values are shown in Table 3. The 
LHV and HHV values presented in Table 3 are the 
values between the highest and the lowest values 
obtained according to the gas analysis results. As 
it is seen that the heating values were very close 
to each other but hydrogen/carbon monoxide rate 
was remarkably different. The H2/CO value was 
desired as high as possible for environmental 
aspects. For this purpose, AFP_1 with the values 
of 5.047 MJ Nm-3 and 1.385 was preferred for 
HHV and H2/CO respectively. In calculations, 
the value in the middle of the measured heating 
values was used.
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3.2. Gasifier performance
Performance characteristics such as FCR, SGR, 
GFR, SGPR, PF, PG and ηCG are given in Table 4. It 
is clearly seen that AFP_1 was preferable because 
of its cold gas efficiency value of 65.4% which is an 
acceptable value for a biomass gasifier. This result is 

in good agreement with previous publications. The 
previous researches on the evaluation of the energy 
content of paddy waste by gasification focused 
mostly on using rice husk as biomass feedstock 
due to fuel preparation cost like shredding and 
pelletizing.

Table 3- Producer gas compositions and heating values for AFP_1 and AFP_2

Airflow
path

Gas compositions (%)
LHV (MJ Nm-3)  HHV (MJ Nm-3) H2 (%)/CO (%)H2 CO CH4

AFP_1 18.25 13.18 2.65 4.584 5.047 1.385(from the top)
AFP_2 15.19 16.45 2.20 4.506 4.890 0.923(from tueyers)

Table 4- Gasifier performance characteristics for AFP_1 and AFP_2

Airflow
path

FCR SGR GFR SGPR PF PG ηCG (%)(kg h-1) (kg h-1 m-2) (Nm3 h-1) (Nm3 h-1 m-2) (kW) (kW)
AFP_1 19.8 205.8 36.1 375.2 70.2 46.0 65.5(from the top)
AFP_2 18.8 195.8 33.5 347.9 66.8 41.9 62.7(from tueyers)

Jain & Goss (2000) studied the optimum values 
of SGR, LHVg and gasification efficiency for rice 
husk gasification and they reported the gasification 
efficiency value of 65% for their gasifier under 
optimum conditions.

Yoon et al (2012) reported that they conducted 
the gasification process under the temperature range 
600-850 °C with the excess air ratio of 0.2-0.32 for 
rice husk pellets. They determined that they reached 
the cold gas efficiency value of 70%.

The size of the mechanical stirrer caused the 
formation of a temperature bridge between the 
combustion and the drying zones in the reactor. 
In addition to this, the system was destabilized 
with the rapid movement of the combustion zone 
towards the drying zone. This situation affected the 
efficiency of the gasification system by shortening 
the time.

3.3. Temperature profiles

AFP_1 was more efficient than AFP_2 hence 
only AFP_1 was used in the experiments without 
mechanical stirrer. Measured temperatures are given 
in Table 5. Temperature profiles given in Figure 8 
were obtained from the data saved from the first five 
thermocouples placed on the reactor body.

Table 5- Temperature distribution for AFP_1, 
AFP_2 and AFP_1 (without stirrer)

Temperature
AFP_1

(from the top)
(°C)

AFP_2
(from tueyers)

(°C)

AFP_1
(without stirrer)

(°C)
T1 41 63 23
T2 44 44 21
T3 73 87 23
T4 705 687 746
T5 66 46 187
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Figure 8- Temperature profiles of reactor for 
AFP_1, AFP_2 and AFP_1 (without stirrer)

Maximum temperature value of the reactor 
was 746 °C and no vitrification observed under the 
experiment conditions. This observation is in well 
agreement with a previous publication by Lin et al 
(1998). Their observation was that the gasification 
temperatures under 1000 K would recover 
amorphous silica materials.

The shaft of stirrer behaved like a heat bridge 
and took the heat from the core region to the upper 
cover of the reactor. In AFP_1, the fresh air that 
came from upside cooled down the upper regions.

3.4. Comparison of the gasifier performance due to 
the stirrer effect

In the experiments, it was determined that AFP_1 
was more efficient than AFP_2 hence only AFP_1 
was used in the experiments without mechanical 
stirrer.

Gas compositions and calculated lower and 
higher heating values are shown in Table 6. Although 
the results were very close to each other, using the 
reactor without stirrer could be more preferable 
when considering reactor manufacturing costs in 
addition to the results.

Performance characteristics such as FCR, SGR, 
GFR, SGPR, PF, PPG and ηCG are given in Table 7. 
It can be seen that the gasification efficiencies for 
both applications were very close to each other.

Table 6- Producer gas compositions and heating values for AFP_1 (with and without stirrer)

Airflow Gas compositions (%) LHV (MJ Nm-3) HHV (MJ Nm-3) H2 (%) / CO (%)path H2 CO CH4

AFP_1 18.25 13.18 2.65 4.584 5.047 1.385(with stirrer)
AFP_1 18.22 12.91 2.66 4.550 5.013 1.411(without stirrer)

Table 7- Gasifier performance characteristics for AFP_1 (with and without stirrer)

Airflow FCR SGR GFR SGPR PF PG ηCG (%)path (kg h-1) (kg h-1 m-2) (Nm3 h-1) (Nm3 h-1 m-2) (kW) (kW)
AFP_1 19.8 205.8 36.1 375.2 70.2 46.0 65.5(with stirrer)
AFP_1 19.5 202.7 35.9 373.1 69.1 45.8 65.6(without stirrer)

4. Conclusions
The designed gasifier for rice straw pellets 
successfully worked. The designed system allowed 
to generate clean producer gas which can be used 
for heating processes. The vitrification could be 

taken under control with designed system. In case of 
using additional cleaning and filtering components, 
electrical power generation would also be possible.

Equivalence ratio was applied as 0.2 for 
experiments. Two different airflow paths were tested 
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with this equivalence ratio and compared for the 
process. AFP_1 had higher cold gas efficiency than 
AFP_2. Furthermore, the H2/CO value of AFP_1 
was higher than that of AFP_2.

Activation of the stirrer caused a decrease in the 
temperature and helped to take them under control 
which can be considered as an advantage. On the 
other hand, the existence of an overhead driven 
stirrer axe generated a disadvantage by acting like 
a heat bridge between reaction zones and driving 
them away from the steady state. Therefore, using 
the overhead driven stirrer was unadvisable for rice 
straw gasification due to the risks for vitrification 
and steady-state points of view.
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Abbreviations and Symbols
DR Diameter of reactor
SGR Specific gasification rate
FCR Fuel consumption rate
HR Height of the reactor
PF Heating power of biomass 
LHV Lower heating values
HHV Higher heating values
SR Stoichiometric ratio
CC Percentages of carbon
CH Percentages of hydrogen
CO Percentages of oxygen
CA Percentages of ash
mB Mass of biomass fuel
t Measured experiment time
ER Equivalence ratio
AFR Airflow rate
SRV Stoichiometric air volume
PG Thermal power of producer gas
SGPR Specific Gas Production Rate
GFR Producer gas flowrate
AR Area of reactor
ηCG Cold gas efficiency
AFP Airflow path
𝜌𝑏 Bulk density of biomass
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