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Abstract
Default risk increases substantially during financial stress times due to mainly the two rea-
sons: volatility clustering and investors’ desire to protect themselves from such increases in 
volatility. It manifested in the aftermath of the Global Financial Crisis of 2008–2009 with 
unpleasant outcomes of many bankruptcies and severe financial distress. To account for 
these features, we adapted the structural credit risk approach to include both time-varying 
(return) volatility and risk premium about the return volatility itself. By applying the model 
to US banks, we obtain better bank default indicators in comparison to the benchmark 
models.

Keywords  Default risk · Structural credit risk · GARCH option pricing · Banking · 
Variance risk premiums

JEL Classification  G01 · G21 · G28

1  Introduction

This paper provides default risk indicators for large US banks by adding volatility cluster-
ing and variance risk premium features into the widely used structural credit risk approach. 
Our motivation stems from the fact that default risk increases substantially during financial 
stress times due to mainly the two reasons: volatility clustering and investors’ willingness 
to protect themselves from such increases in volatility. Experiences from such episodes like 
the Global Financial Crisis (GFC) of 2007–2009 and the Covid-19 pandemic show that 
the volatility of asset prices get heightened, and in turn, leads to increases in the default 
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probability. For example, in the aftermath of the GFC, many US banks experienced severe 
financial distress and even bankruptcies. More precisely, banks default on their debt if their 
asset value does not cover the liabilities at the time of the repayment. Investors’ appetite for 
risk aversion to the volatility of such increases in volatility further reinforces this process. 
This variance risk premium fosters default risk by adding on declines in asset prices.

In market downturns, the volatility clustering and variance risk premiums phenomena 
coupled with fundamental weaknesses in financial balance sheets such as high leverage 
ratios and asset-liability mismatches often lead to financial distresses and even bankrupt-
cies in severe cases. Indeed, the Federal Deposit Insurance Corporation (FDIC) closed 465 
failed banks from 2008 to 2012. In contrast, in the five years prior to 2008, only 10 banks 
failed. The Federal Reserve System (the FED) provided liquidity support for the remaining 
financially distressed banks. Such a high-level bank failure reflects the fact that the special 
nature of bank assets due to its limited upside gains leads to volatile bank equity returns 
and hence higher default risk (see Nagel and Purnanandam 2019). Simultaneous failures of 
banks in the US have raised doubts on risk management practices worldwide and provided 
strong motivation for monitoring the default risk of financial institutions to prevent finan-
cial crises in advance. Such conditions evidently necessitate a reliable model of default risk 
that amply captures the impact of heightened volatility episodes on default measures.

The structural credit risk approach developed in Merton (1974) is a benchmark in 
default risk estimation because it takes asset returns, volatility, leverage, and maturity into 
accounts in a forward looking-way. Precisely, the model is used to extract asset values 
hence its asset returns and volatility from equity prices by exploiting the claim that the call 
option written on the firm asset value is equal to the firm equity value. Market information 
on their stock prices is then used in a forward-looking way to estimate the implied default 
probabilities for banks. For example, a decline in the stock price of a firm, ceteris paribus, 
corresponds to an increase in the default probability of that bank. The size of this impact 
depends on its leverage ratio, return volatility level and risk premium about the return vola-
tility itself. A large body of literature (Crosbie and Bohn 2003; Hillegeist et al. 2004; Bhar-
ath and Shumway 2008; Agarwal and Taffler 2008; Milne 2014; Leland 2015; Jessen and 
Lando 2015; Afik et al. 2016; Nagel and Purnanandam 2019; Imerman 2020)1 finds that 
the Merton model is empirically a strong predictor of default. However, the success of the 
Merton model is in ranking firms’ default probabilities. Otherwise, it is notoriously known 
to produce default probabilities that are too low.

To this end, the literature has incorporated new features into the Merton model such 
as jumps in asset values, stochastic volatility, endogenous default. Several papers (Jessen 
and Lando 2015; Engle and Siriwardane 2018) have highlighted the power of volatility 
dynamics in explaining default probability. To capture the volatility dynamics observed 
during market downturns adequately, we introduce time-varying volatility via an appro-
priate GARCH model. Volatility in stock markets tends to breed future ones. In market 
downturns, this phenomenon becomes even more pronounced as markets often produce 
heightened market volatility.2 We adopted the GARCH model of Heston and Nandi (2000) 
(HN-GARCH). This model has desirable features: among others (1) it captures asymmetry 

1  Reduced-form models (Duffie et  al. 2007; Campbell et  al. 2011) also widely use the Merton model’s 
default indicator the distance-to-default as an explanatory variable.
2  There is overwhelming empirical evidence that GARCH models dominate the benchmark constant vola-
tility Black-Scholes model achieving significant overall improvements in pricing performance. See Lehar 
et al. (2002), Hsieh and Ritchken (2005) and Christoffersen et al. (2013b).
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in the response of volatility to positive versus negative return shocks, which is commonly 
referred to as the leverage effect; and (2) it provides a closed-form option pricing formula. 
The HN-GARCH model has wide applications in the options pricing literature (Christof-
fersen et al. 2013b; Kenc et al. 2021, and references therein).

However, a vast body of literature starting with (Bakshi and Kapadia 2003; Carr and 
Wu 2009; Bollerslev et  al. 2009) has increasingly recognized that the presence of vari-
ance risk premiums improves the model fit of the option pricing frameworks. Indeed, the 
literature provide a great deal of evidence on the existence of negative and economically 
large variance risk premiums in equity markets and other financial markets. More impor-
tantly, the work of Wang et al. (2013) finds that the variance risk premium has a prominent 
explanatory power for credit risk spreads. As a result, many papers have extended either 
the HN-GARCH model or the stochastic volatility of Heston (1993) to variance risk premi-
ums, applying it to several financial markets including equity, bond, credit risk, commodity 
and foreign currency (Christoffersen et al. 2013a; Hao and Zhang 2013; Wang et al. 2013; 
Bu and Liao 2014; Byun et al. 2015; Babaoglu et al. 2018; Della Corte et al. 2016; Choi 
et al. 2017; Dew-Becker et al. 2017; Prokopczuk et al. 2017). We closely follow Christof-
fersen et al. (2013a) to incorporate variance risk premiums into the HN-GARCH frame-
work. They show that variance risk premiums scale-up conditional variance values and 
hence address the low default probabilities deficiency problem of the Merton model.

This paper draws on the following strands of the literature. First of all, it is related to 
research on the insolvency of financial institutions more precisely on the structural models 
of default risk inspired by the seminal work of Merton (1974). In the area of default risks 
in the banking sector (Lehar 2005; Gropp et al. 2006; Harada et al. 2010; Câmara et al. 
2012; Milne 2014) applied this benchmark Merton model. The next related literature is 
the Merton model with volatility clustering. Like the papers by Balachandran et al. (2010), 
Culp et al. (2018) and Engle and Siriwardane (2018) our paper is also capable of capturing 
volatility clustering. Engle and Siriwardane (2018) develops a structural GARCH model 
by combining the Merton structural credit risk framework and the Glosten et  al. (1993) 
GARCH specification to capture equity volatility asymmetry—the well-known negative 
correlation between equity returns and equity volatility. Culp et  al. (2018) introduces a 
novel, model-free benchmarking methodology to the empirical Merton model. However, 
these papers are quite different from the standard KMV-Merton literature in terms of the 
underlying model and their applications. In this regard, our paper strictly belongs to the 
KMV-Merton strand of the literature and hence generates comparable results. Balachan-
dran et  al. (2010) analyze specifically the effects of executive compensation on extreme 
risk. Finally, Du et al. (2019) also applies the time-varying asset volatility to address the 
credit spread puzzle while Jessen and Lando (2015) highlights the importance of “a volatil-
ity adjustment of the distance-to-default measure” in order to significantly improve default 
forecasting. Finally, our paper is related to the variance risk premium literature. We men-
tioned many of the related papers on the variance risk premium in the previous paragraph. 
None of these papers consider the estimation of default risks for neither banks nor non-
financial firms.

Our structural default risk model with GARCH and VRP features has significantly 
improved the existing results of the literature as it generates statistically significant results in 
predicting default events and forecasting default probabilities. In all performance measures 
that we apply, the predictive power of the model with volatility clustering and variance risk 
premium is higher than the benchmark the KMV-Merton model without them. For example, 
our ROC (Receiver Operating Characteristic) and CAP (Cumulative Accuracy Profile) analy-
sis show that the HN-GARCH-VRP model produces higher rates of hits (true positives) for 
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any given rate of false alarms compared to the other two models. Similarly, markedly bet-
ter performances are also recorded by the GARCH-VRP model over the other two models in 
terms of hazard model probabilities with respect to default risk indicators.

The paper proceeds as follows. In Sect. 2 we discuss the three structural default risk models 
used in this paper, namely the benchmark Merton model, the HN-GARCH extended Merton 
model and the HN-GARCH and VRP extended Merton model. In Sects. 3 and 4, we describe 
implementation of the model, i.e., the transformed-data maximum likelihood method devel-
oped by Duan (1994, 2000) and data. Empirical findings of the paper are in Sect. 5, followed 
by conclusion in Sect. 6.

2 � Structural default models

In this section, we start with the benchmark Merton model, which will be followed by the 
GARCH option pricing model used in this paper to estimate default probabilities.

2.1 � The benchmark merton model

The Merton approach to structural default modelling is to assume that a company (a bank in 
our case) at time t has a certain amount of (a single) zero-coupon debt that will become due 
at a future time t + T and that this company defaults if the value of its assets A is less than the 
promised debt repayment K at time t + T . The probability of such a default, assuming K does 
not change until t + T , is given by

where Ft denotes the information available at time t . To proceed, the approach requires a 
stochastic process under the physical probability measure ( � ) to specify the dynamics of A:

where �A is the expected continuously compounded return on A , �A is the volatility of asset 
returns and dW is a standard Wiener process. Key parameters �A and �A of this process are 
constant over the life of the firm. Eq. (2) is also written as:

where

(1)Pdef ,t = ����

(
At+T ≤ Kt|Ft

)
= Prob

(
ln(At+T ) ≤ ln(Kt)|Ft

)

(2)dAt = �A At dt + �A At dWt

(3)lnAt+T = lnAt +
�
�A −

1

2
�2
A

�
T + �A

√
T �t+T ,

�t+T =
Wt+T −Wt√

T
and �t+T ∼ N(0, 1).
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Substituting this last Eq. (3) into Eq. (1) yields the following new expression for the default 
probability3

where DD represents the distance to default, which is defined as

This roughly measures the number of standard deviations the firm’s asset value would have 
to decrease in order to reach the default point K.4 In Eq. (5), we have three unknowns: A, 
�A and �A which are estimated from equity data. The estimation procedure is based on the 
option pricing framework which relates equity values to asset values in this context. There 
exit several approaches in implementing this procedure.5 We will follow the (1) the trans-
formed-data maximum likelihood method developed by Duan (1994, 2000).

2.2 � The Heston–Nandi GARCH option pricing model

We follow Christoffersen et  al. (2013b), among others, to specify the Heston–Nandi 
GARCH process as follows:

where r is the continuously compounded risk-free rate, ht is the conditional variance of the 
log return between t − 1 and t and �t is a standard normal random variable. Moreover, �1 is 
the autoregressive parameter and �2 is related to the volatility of volatility, and thus kur-
tosis. The � parameter captures asymmetry in the response of volatility to positive versus 
negative return shocks, which is commonly referred to as the leverage effect. The persis-
tence parameter is � = �1 + �2�

2 . The term r + �ht in Eq. (6) is the expected rate of return, 
implying that �ht is the risk premium.

PM
def

= N
�
lnAt − ln(K) +

�
�A −

1

2
�2
A

�
T + �A

√
T�t+T ≤ 0

�
,

(4)PM
def

= N
(
−DD ≥ �t+T

)
,

(5)DD =
ln(A∕K) + [�A −

1

2
�2
A
]T

�A

√
T

.

(6)ln At = ln At−1 + r +
�
� −

1

2

�
ht +

√
ht �t,

(7)ht =�0 + �1 ht−1 + �2(�t−1 − �
√
ht−1)

2,

3  As pointed out by Vassalou and Xing (2004) the theoretical distribution implied by the Merton model is 
the normal distribution. On the contrary, the KMV approach utilizes their own default database to derive 
an empirical distribution relating the distance-to-default to a default probability. In this regard, unlike the 
default probability calculated by KMV the probability measure in Eq. (4) may not correspond to the true 
probability of default in large samples.
4  N(−DD) is then the corresponding implied probability of default and sometimes called the expected 
default frequency (or EDF).
5  Duan (2012) discusses the widely-used four methods, namely (1) the market value proxy method, (2) 
the volatility restriction method, (3) the iterative method and (4) the transformed-data maximum likelihood 
method. For a similar discussion see also Jessen and Lando (2015).
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2.3 � Variance risk premia

In the presence of variance risk premia we modify the stochastic processes for A and h as 
follows:

where

In the above equations, � and � are the pricing kernel parameters that determine the price 
of asset price risk and variance risk premium.

Equations (8) (or 6) and (9) (or 7) reveal that both the drift and diffusion terms of the 
asset value process are time-varying. Because of this heteroskedasticity, the unconditional 
distribution is fat-tailed. To ensure stationarity of the variance, it is required that the param-
eters satisfy 𝛽1(1 + 𝛾2) + 𝛽2 < 1 under the basic GARCH and 𝛽∗

1
(1 + 𝛾∗2) + 𝛽2 < 1 under 

the GARCH-VRP. The unconditional variances of the process under basic GARCH and 
GARCH-VRP are then given by �0∕[1 − �1(1 + �2) − �2] and �∗

0
∕[1 − �∗

1
(1 + �∗2) − �∗

2
] , 

respectively. The GARCH process defined in Eqs. (8) (or 6) and (9) (or 7) reduces to the 
standard homoskedastic lognormal process of the Merton model if �1 = 0 and �2 = 0.

In other words, the Merton model is obtained as a special case. Note that in the above 
equations, the length of observation determines the time period of the terms r and ht . So, if 
the estimation interval is monthly, then, for example, rt is the monthly interest rate at time t.

Estimating default probabilities with GARCH using Eqs. (6)–(7) and Eqs. (8)–(9) when 
the variance risk premium is at present is not an easy task. There are two challenges: (1) 
obtaining expressions for At+T and hence its drift and diffusion terms required in Eq. (6) 
or Eq. (8) and (2) backing out these unobservables (A and the related terms) from observ-
able variables. To tackle these challenges, we utilize the basic and extended forms of the 
HN-GARCH option pricing model and the transformed-data maximum likelihood estima-
tion (MLE) method developed by Duan (1995). We will explain the steps at some length 
below. Heston and Nandi (2000) obtained a closed-form solutions for the values of Euro-
pean type options written on the underlying assets that follow the GARCH model specified 
in Eqs. (6) and (7). Their derivation also includes an expression for the probability of the 
value of A being greater than K at the option expiry date t + T  . Based on the risk-neutral 
process explained in Appendix 1, Heston and Nandi (2000) obtained a closed-form solu-
tion for European type options via Fourier inversion. The formula for a call option CHN 
with strike price K that expires at time t + T  is given by:

(8)ln(At) = ln(At−1) + r −
1

2
h∗
t
+
√
h∗�∗

t
with �∗

t
∼ N(0, 1),

(9)h∗
t
=�∗

0
+ �∗

1
(�∗

t−1
− �∗

√
h∗
t−1

)2 + �2 h
∗
t−1

,

h∗
t
=ht∕(1 − 2�0�)

�∗
0
=�0∕(1 − 2�0�)

�∗
1
=�1∕(1 − 2�0�)

�∗ =� − �

� = −
(
� −

1

2
+ �

)
(1 − 2�0�) + � −

1

2
,

(10)CHN(At,K, r, ht, T) = AtP
Q,HN

1
(r, hQ, .) − Ke−rTP

Q,HN

2
(r, hQ, .)
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where PQ,HN
1

 and PQ,HN
2

 are the probability terms corresponding to the Black-Scholes-Mer-
ton model’s usual terms N(d1) and N(d2) : 

 where f ∗(t, T;i�) is the conditional characteristic function of the logarithm of the spot 
price under the risk-neutral measure (see Appendix 1). Incorporating variance risk premia 
into the HN-GARCH option pricing framework is straight forward since we only require to 
use the scaled values of h∗

t
 , �∗

0
 , �∗

1
 and �∗ ∶

Having written down the Heston-Nandi GARCH option valuation framework with and 
without VRP, we can now rewrite the probability of the default expression in (1) in a more 
explicit form:

Note that the default probabilities in equations in (14) and (15) are physical measures as 
required. Hence we now discount future cash flows at r + �ht rather than only at r. Also, 
asset values At and variance ht are simulated over time using Eqs.  (6) and (7) under the 
HN-GARCH model and Eqs.  (8) and (9) under the HN-GARCH-VRP. Comparing the 
default probability indicators in Eqs. (5) and  (14) together with Eqs. (11a)–(11b) reveals 
that the latter is much more complicated as it takes into account a rich set of volatility 
dynamics with and without VRP. The rich volatility dynamics stemming from the GARCH 
specification captures the volatility clustering effect. Large changes in volatility tend to be 
followed by large ones. This heightened volatility then directly increases the default prob-
ability as under high ht it is more likely that the asset value may be less than the debt value 
compared to when ht is low. There is also an indirect effect on default which stems from the 
fact that the increased volatility pushes up the option (equity) value and hence the implied 
asset value, lowering default probability. To see which effect will dominate, we can use the 
distance-to-default expressions in Eqs. (5) and (4). The direct effect via 

√
ht appears in the 

denominator. Finally, the GARCH process defined in Eqs. (6) and  (7) reduces to the stand-
ard homoskedastic lognormal process of the Merton model if �0 = 0 and �1 = 0 . As for the 
impact of the GARCH with VRP model, we note that the risk-neutral variance, persistence, 

(11a)P
Q,HN

1
(r, hQ, .) =

1

2
+

e−rT

At� ∫
∞

0

Re

[
K−i�f ∗(t, T;i� + 1)

i�f (1)

]
d�,

(11b)P
Q,HN

2
(r, hQ, .) =

1

2
+

1

� ∫
∞

0

Re

[
K−i�f ∗(t, T;i�)

i�

]
d�,

(12)CHN∗(
At,K, r, h

∗
t
, T

)
= AtP

Q,HN∗

1

(
r, hQ

∗

, .
)
− Ke−rTP

Q,HN∗

2

(
r, hQ

∗

, .
)

(13a)P
Q,HN∗

1

(
r, hQ

∗

, .
)
=

1

2
+

e−rT

At� ∫
∞

0

Re

[
K−i�f ∗(t, T;i� + 1)

i�f (1)

]
d�,

(13b)P
Q,HN∗

2

(
r, hQ

∗

, .
)
=

1

2
+

1

� ∫
∞

0

Re

[
K−i�f ∗(t, T;i�)

i�

]
d�,

(14)PHN∗

def ,t
=1 − PP

2
(r + �hP, hP,AHN , .)

(15)PHN∗

def ,t
=1 − PP

2
(r + �hP, hP,AHN∗

, .)
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and volatility of variance in this new model differ from their physical counterparts. Empiri-
cal restrictions on the underlying parameters imply that their values are larger than those of 
the physical ones. This in turn increases the option (equity) value, requiring lower values of 
bank assets in the backing out process. Precisely, we calibrate the option value to the equity 
value via the asset value as it is the underlying asset for the option. The lower is the asset 
value, the higher is the probability of default. Hence, default probability under our GARCH 
with VRP model will be larger than the model without VRP.

3 � Implementation of the extended Merton model

In this section, we explain only the implementation of the Merton model with HN-GARCH 
specification and VRP. In fact, the other two methods, namely the Merton method and the 
HN-GARCH extended Merton model are simply the special cases of the model with both 
GARCH and VRP features. Given the time-varying volatility feature of our model, we 
think that the most appropriate method for estimating the HN-GARCH based default prob-
ability measure is the transformed-data MLE method developed by Duan (1994, 2000). We 
will now explain the steps below.

If we had data on assets in order to estimate the parameters of the At process, we could 
have maximized the following log-likelihood function:

where n is the number of observations and � = {�0, �1, �2, � , �} . Since we do not observe 
the value of assets, we back them out from the call option price equation in (12). The con-
tingent claims approach suggested that the call option written on the value of assets as 
explained above is equal to the value of the equity:

Hence, we write At = g−1(E,K, r, h, T) with T = �t × n , �t being the length of time inter-
val. Duan (1994, 2000) recognizes that the density of the equity value can be obtained as

Plugging the resulting expression into the above log-likelihood function in (16) yields the 
following log-likelihood function on the observed equity data:

To make the parameter estimates consistent with the observed long-term variance in 
MLE under the physical measure, we used the relation �0 = h(1 − �) − 1 , where h is the 

(16)
lnL(A;�) = −

1

2

∑n

i=1

�
ln(hi) +

�
ln(Ai∕Ai−1) − ri −

�
� −

1

2

�
hi

�2
∕hi

�

hi = �0 + �1 hi−1 + �2(�i−1 − �
√
hi−1)

2,

Et = g
(
At,K, r, ht, T

)
= AtP

Q,HN∗

1

(
r, hQ,HN

∗

, .
)
− Ke−rTP

Q,HN∗

2

(
r, hQ,HN

∗

, .
)

f (E) =
f (A)

�g(A,K,r,h,T)

�A

(17)

lnL(E;�) = −
1

2

n∑

i=1

{
ln(hi) +

[
ln(g−1(Ei)∕g

−1(Ei−1)) − ri −
(
� −

1

2

)
hi

]2
∕hi

}

−

n∑

i=1

�1(g
−1(Ei−1)).
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unconditional variance under the physical measure, calculated directly from preceding 
daily return series and � is the autoregressive term.

The final step is to plug the asset values into the default probability equation in (14) 
and to estimate the default probability of each bank in the sample. We convert these daily 
default probabilities into monthly data by using the maximum value for each month.

4 � Data

Our sample consists of large U.S. commercial banks based on their total assets. We choose 
banks with total assets exceeding $1 billion as of the end of 2006. There were 138 banks 
from the sample of 159 that met the criterion after eliminating 21 banks due to data una-
vailability, implying a share of 73% in the commercial banking sector. To classify a bank 
as distressed, we apply the following three criteria adopted from the work of Câmara et al. 
(2012):6

1.	 The bank failed or got acquired in 2008–2009.7
2.	 The firm has a below-investment-grade credit rating by at least one of the three big rating 

agency firms, namely S&P, Moodys and Fitch during 2008–2009.
3.	 The stock price dropped below $5.00 per share from a previous high and remained below 

this threshold, and the bank had suspended dividend payments.

Upon a careful examination of the sample of 138 banks for the criteria during the period 
2008–2009, we classified 42 financial firms as distressed, leaving the remaining 96 as 
sound entities. Table 4 in Appendix 1 presents the stress status of each sample bank. The 
data set includes both accounting variables such as short-term debt, long-term debt, the 
number of shares outstanding and financial variables such as daily stock prices and the 
risk-free rate from 2000–2013. All data come from DataStream except for the risk-free rate 
and capital adequacy ratio, whose source is Federal Reserve Economic Data (FRED). The 
frequency of the accounting data is yearly; hence to obtain daily values following the work 
of Balachandran et al. (2010) we employ the cubic spline method. Since default takes place 
only at the maturity of debt, implementing the Merton type of structural default risk mod-
els requires the conversion of debt maturities into the face value of a single short-term one. 
The commonly adopted approach (Vassalou and Xing 2004; Bharath and Shumway 2008) 
is to take the total of short-term debt plus half of the long-term term debt. However, in the 
classification of short-term liabilities, the banking sector requires further refinement. As 
argued by Harada et al. (2010), maturity is not economically relevant for banks because, in 
the case of a bank run, the depositors tend to withdraw even if the maturity of the deposit 
is long-term. Like Harada et al. (2010) and Saldias (2013), we also calculate the short-term 
liabilities as of the sum of the total deposit and short-term debt. As for equity values and 
risk-free rates, we obtain them from the daily stock prices for each bank and the one year 
T-bill rate, respectively.

6  The default events for each bank are obtained from the Federal Deposit Insurance Corporation (https://​
www.​fdic.​gov/​bank/​indiv​idual/​failed/​bankl​ist.​html).
7  Although the GFC started in 2007, bank failures and acquisitions took place during this period due to the 
GFC.

https://www.fdic.gov/bank/individual/failed/banklist.html
https://www.fdic.gov/bank/individual/failed/banklist.html
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5 � Empirical results

The empirical work starts with the estimation of the parameters of the three alternative 
models, namely (1) the KMV-Merton model, (2) the GARCH extended Merton model 
and (3) the GARCH and VRP extended Merton model for which we use the Transformed 
Data Maximum Likelihood Method by Duan (1994, 2000). The critical step in calculating 
option prices with a variance risk premium is to estimate the variance risk premium param-
eter ( � ). We take its value from the empirical work when pricing variance risk premia. In 
fact, in this paper, as in Christoffersen et al. (2013a) we take 117,438 for the variance risk 
premium parameter �.8 Note that as demonstrated in Christoffersen et al. (2013a) although 
the variance risk premium parameter is taken as a constant value, in the presence of the 
time-varying GARCH volatility even this constant parameter setting leads to time-varying 
variance-risk premia.

We first present descriptive statistics for estimated average capital default probabili-
ties for 138 banks within the sample. Table 1 presents the mean, median, maximum and 
minimum values, the standard deviation of default probabilities that are obtained under 

0.0

0.1

0.2

0.3

0.4

2000 2005 2010

Year

P
ro

ba
bi

lit
y 

of
 D
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lt
GARCH−VRP
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Fig. 1   Probability of default this figure plots the average of default probabilities of 138 large US banks over 
the period 2000–2013. The probability of default for each bank for our three models is computed using 
Eqs. (4), (14) and (15), respectively

8  In recent years, there has been a great interest in incorporating variance risk premia into financial valua-
tion models. Financial economists use different methods to estimate this premium, ranging from a joint esti-
mation of variance risk premia and return-risk premium approach to a sequential approach. See Babaoglu 
et al. (2018), Christoffersen et al. (2013a) and Papantonis (2016) among others.
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the three models: (1) the KMV-Merton model, (2) the GARCH extended Merton model 
and (3) the GARCH with VRP extended Merton model. The main message of this table is 
that the GARCH option pricing model with variance risk premium (denoted by GARCH-
VRP) yields both higher mean, median and maximum default probabilities compared to 
the KMV-Merton model and the GARCH option pricing model without variance risk pre-
mium. Similarly, without variance risk premia the standard GARCH option pricing model 
still produces higher mean and maximum default probabilities compared to the KMV-Mer-
ton model in which the volatility specification is atemporal. Figure 1 plots the time profile 
of the average estimated default probabilities across 138 US banks with the shaded areas 
representing NBER recessions in the US. A prominent feature of Fig. 1 is the relatively 
high default probabilities implied by both HN-GARCH option pricing models with and 
without variance risk premia at the beginning of the sample as well as during the Global 
Financial Crisis of 2008–2009. As in Table 1, Fig. 1 also reveals that throughout the sam-
ple the model with variance risk premia generates higher default probabilities compared to 
the other two models.

5.1 � Measuring model accuracy

In order to identify the statistical importance of these results, we have employed a num-
ber of statistical performance measures and tests that are typical in the related literature. 
These are the Spearman (correlation coefficient) test, the Receiver Operating Characteris-
tics (ROC) analysis and the hazard model.

We first employ the Receiver Operating Curve (ROC) that is the most widely accepted 
technique used in practice to determine the ability of a model to predict actual defaults over 
a 3-year horizon. The ROC is a graph of true positive rates (TPR) and false positive rates 
(FPR) where TPR can be calculated as the ratio of the number of distressed firms clas-
sified as high risk to the total number of distressed firms and the FPR is called the false 
alarm rate and is calculated as the ratio of the number of non-failed firms classified as high 
risk to the total number of solvent firms. Note that the area under the curve (AUC) is that 
of a perfect model and the 45-degree line is due to a random classification. The AUC is 
between 0 and 1 and the AUC of a random assignment is 0.5. Accordingly, the AUC of the 
“perfect” model is 1. On the other hand, when the test includes non-failed firms with low 
default probability, it is advantageous to employ a partial AUC (pAUC) test that focuses 

Table 1   Descriptive statistics

***, ** and * indicate statistical significance at 1, 5 and 10 percent, 
respectively

KMV-Merton GARCH GARCH-VRP

Mean 0.008 0.043 0.105
Median 0.002 0.030 0.091
Maximum 0.101 0.327 0.467
Minimum 0.000 0.001 0.011
Std. Dev. 0.013 0.050 0.083
Spearman rank correlation
KMV-Merton 1.000
GARCH 0.992*** 1.000
GARCH-VRP 0.943*** 0.958*** 1.000
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on the interval of low FPR. Therefore we also calculate the pAUC for 0.25 that would be 
informative for investors, lenders, or regulators then the entire curve. To construct the ROC 
curve, we rank banks from high-risk to low-risk according to maximum default probabili-
ties for the 2007–2009 period. The ROC curves are given in Fig. 2 and the AUC and pAUC 
values for the respective ROC curves in Table 2. Results in Fig. 2 and Table 2 indicate that 
the GARCH-VRP model outperforms the KMV-Merton and GARCH models in classifying 
all firms into distressed or non-distressed states as the largest AUC value is obtained from 
the GARCH-VRP model (0.988). Moreover, this score is statistically higher than the KMV-
Merton and GARCH models at the 1% and 10% levels respectively. The pAUC values for 
the FPR ≤ 0.25 interval yields similar results in that the largest value is obtained from 
GARCH-VRP model and this is statistically higher than the Merton and GARCH models 

Table 2   Area under the ROC 
curves

�2-stat gives the test statistic where the null hypothesis indicates that 
AUC (pAUC) value for GARCH-VR model is not different from the 
AUC value of the KMV-Merton and GARCH models and p values 
show probability of rejecting the null hypothesis

ROC �2-stat p value pAUC (0.25) p value

KMV-Merton 0.950 4.59 [0.003] 0.211 [0.041]
GARCH 0.957 2.79 [0.094] 0.218 [0.054]
GARCH-VRP 0.988 0.236
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Fig. 2   ROC curves for KMV-Merton, GARCH and GARCH with variance risk premia models
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at the 5% and 10% levels respectively.9 These results suggest that our credit risk model pro-
vides substantial information about future defaults.

Following Bharath and Shumway (2008), we apply the survival analysis to assess model 
accuracy via the Cox proportional hazard model.10 A popular survival analysis model, the 
Cox proportional hazard model uses the hazard rate that can be defined as the risk of bank 
failure where the bank has survived up to a specific time. The hazard indicates the expected 
number of bank failures per unit of time. Hence, the model allows us not only to use the 
level of a default indicator at a certain point in time but also how long the default indicator 
remains at this level. The Cox proportional hazard model can be written as follows:

where hr(t, DI, X) is the proportional hazard function, hr0(t) is the baseline hazard rate and 
DD is the distance to default11 and X is the control variables such as excess returns (excess) 
and the face value of debt (K). The model parameters can be estimated by using the follow-
ing partial log-likelihood function:

(18)hr(t,DI,X) = hr0(t)e
�1(−DD)+�2X

Table 3   Hazard model results

Models 1, 2 and 3 denotes the GARCH-VRP, GARCH and KMV-
Merton model, respectively. The distance-to-default measure (DD) 
for the KMV-Merton model is computed from Eq.  (5). For the HN-
GARCH model the DD formula is obtained by taking the normal 
inverse of Eq. (11b) (i.e., −N−1(PHN

2
) and for the GARCH-VRP model 

it is the normal inverse of Eq. (13b). *** and ** indicates statistically 
significant correlation at the 1% and 5% level

Dependent variable: duration (in months) until fail

Variables Model 1 Model 2 Model 3

-DD GARCH-VRP 6.603*** – –
-DD GARCH – 3.431*** –
-DD KMV-MERTON – – 1.741***
log (K) 1.244** 1.279** 1.189**
Excess 1.150 1.270 1.072
Number of observations 21036 21036 21036
Number of banks 138 138 138
Number of failures 42 42 42
Wald �2 73.78 [0.000] 65.80 [0.000] 62.93 [0.000]
Time at risk 21036 21036 21036
Zero slope test 6.34 [0.09] 6.48 [0.090] 6.56 [0.0875]

9  We also estimate the pAUC values for the FPR ≤ 0.1 interval and the largest value is obtained from 
GARCH-VRP model and this found to be statistically higher than the Merton and GARCH models at the 
10% level.
10  Gropp et al. (2006); Gupta et al. (2015) also used the hazard model to predict the failure of firms.
11  In models with HN-GARCH specifications we do not have explicit DD expressions. We therefore obtain 
them by taking the normal inverse of Eq. (11b) (i.e., −N−1(PHN

2
) where N−1 is the inverse standard normal 

distribution function) and Eq.  (13b) for the HN GARCH extended Merton model without and with VRP, 
respectively.
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where j indexes the ordered times of a bank fails ( j = 1, 2,⋯ ,D ), Dj is the set of dj obser-
vations that are banks fails at t(j) and Rj is the set of observations that are at risk at time 
t(j). The model allows for censoring in the sense that not all banks failed during the sample 
period.

The Cox proportional hazard model results given in Table 3 indicate that both default 
indicators are positive and statistically significant at 1% significance level. These results 
suggest that an increase in the default indicators lead to an increase in the hazard ratio. 
However, of the effects of the estimated distance to default on hazard ratios, the GARCH-
VRP model has the highest impact compared to the Merton and GARCH models. Overall, 
the results in Table 3 show that one can improve on the Merton model and the GARCH-
based default models with and without VRP are at least as good as the Merton model in 
forecasting defaults.

To sum up, the model with volatility clustering and variance risk premium features 
compared to the HN-GARCH option pricing model as well as the KVM-Merton model 
performs better in the following ways: (1) better tracking of crisis events in the US banking 
sector; (2) better anticipating the sub-prime crisis and (3) yielding substantially as higher 
default probabilities as observed during financial turmoil such as the GFC.

6 � Conclusion

To better-estimate default risk indicators for large US banks, especially in periods of 
heightened market uncertainty, the paper extended the benchmark structural default risk 
model to incorporate volatility clustering and variance risk premium effects. Using this 
rich framework, we show that taking into account these dynamics can improve default risk 
measures compared to estimates based on standard models. More importantly, concern-
ing model predictive power measures, the model with volatility clustering and variance 
risk premium produces better performance measures compared to models without such 
features.

Our analytical and empirical results suggest some directions for further research. First, 
one could consider endogenous default models along the lines of Leland (2015). Second, 
alternative GARCH specifications would better capture leverage effects than the HN-
GARCH model. Third, González-Urteaga and Rubio (2016) find significant cross-sectional 
variation of volatility risk premia. Finally, a systemic risk analysis for the US financial sec-
tor together with the contribution of each bank to the risk can follow up this work.

Appendix A: List of the sampled U.S. Banks

See Table 4

(19)lnL =

D∑

j=1

{ ∑

r∈Dj

[
�1(−DDr) + �2Xr

]
− dj ln

[∑

r∈Rj

[
�1(−DDj) + �2Xj

]]}
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Appendix B: Risk‑neutralization of the HN‑GARCH 
with and without variance risk premia

Following Christoffersen et al. (2013a) and Byun et al. (2015), we use the stochastic dis-
count factor:

To risk-neutralize the asset value process in Eq. (6), we require

To proceed we write:

where �t = 1 + 2v2,tht . This implies that v1,t = � and v2,t = (� − 1)∕2ht . The standardized 
risk-neutral innovation is given by

We repeat the above risk-neutralization process for the case without variance risk premium:

with the implication that vt−1 = −� and hence �∗
t
= �t + �

√
ht under the risk-neutral-� 

measure. We can therefore write the risk-neutral processes for the asset value and variance 
of its returns as follows:

where �∗ = � + � and �∗
t
= �t + �

√
ht.
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Appendix C: The characteristic function

The characteristic function of the HN-GARCH model is represented by a set of difference 
equations:

with coefficients 

 Note that Mt and Nt are implicitly functions of T and � . This system of difference equa-
tions can be solved backwards using the terminal condition MT = NT = 0.
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