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ABSTRACT
Since mathematical models play a key role in investigating the 
dynamics of infectious diseases, many mathematical models for 
these diseases are developed. In this paper, it is aimed to determine 
the dynamics of Tuberculosis (TB) in Turkey, how much it will affect 
the future and the impact of vaccine therapy on the disease. For this 
purpose, three mathematical models (SIR, SEIR and BSEIR) in the 
literature are considered for the case of Turkey. The model para-
meters are obtained with TB reported data from 2005 to 2015 by 
using the least square method. The obtained results revealed that the 
basic reproduction ratio for all three models is less than 1. Moreover, 
the stability analysis of the models and sensitivity analysis of the 
model parameters are presented and discussed. Finally, the accuracy 
of results for all three models is compared and the effect of the 
vaccination rate is discussed.
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1. Introduction

During human history, many epidemics such as tuberculosis, influenza, SARS, MERS and 
Ebola have affected the population in many respect such as health, politics and economy. 
Therefore, scientists and governments have tried to keep epidemics under control. Recently, 
the current outbreak of the coronavirus disease (COVID-19) re-exposes the importance of 
epidemic researches and development of the mathematical models to describe the behaviour 
of epidemics. Among epidemic diseases, Tuberculosis (TB) which is a chronic infectious 
disease caused by Mycobacterium (MTB) usually affects the lungs but can also other organs 
like the brain, kidneys, gastrointestinal tract, bone, lymph nodes, etc. The bacteria that cause 
TB are spread through contaminated air released during the coughing of TB patients. 
Compared with other diseases caused by a single infectious agent, TB is the second leading 
lethal disease all over the world, especially in Asia and Africa. According to the World Health 
Organization (WHO) data, 1.8 million people died of the disease and 10.4 million fell ill in 
2015. This shows that TB is a danger to human health and affects economic and social life 
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negatively. Therefore, the current state of the disease should be understood and control 
programmes should be planned in order to prevent the spread of the disease.

Mathematical models have an important role in the planning of TB control programs. 
Modelling is a useful tool to understand the dynamics of an epidemic that would help to 
prevent spreading. Besides, models contribute to predict the future of epidemic and 
control of the disease. The first study on the mathematical modelling of the spread of 
disease was proposed by Bernoulli in 1766 [1]. Since the 20th century, interest in studying 
mathematical modelling of infectious diseases has increased. The earlier related studies 
can be found in [2–9].

In 1927, Kermack and McKendrick proposed a deterministic model to describe the 
behaviour of epidemic propagation known as the Susceptible – Infected – Recovered 
(SIR) model [10]. Although this model has been successfully used to describe the 
behaviour of disease, neglecting the other compartments and control strategies, such as 
vaccination, treatment, quarantine, isolation, and the effect of age and sex is unrealistic. 
Therefore, many researchers have focused on constructing more realistic models [11–24].

A significant improvement to the SIR model is the addition of the exposed group which is 
infected but not infectious, called the Susceptible – Exposed – Infected – Recovered (SEIR) 
model [25–29]. The role of the season on the transmission of an epidemic was first investi-
gated by Aron and Schwartz [30] using the SEIR model. Li et al. [31] studied the global 
dynamics of the SEIR model in the case of variable total population size. Newton and Reiter 
[32] developed an SEIR model for observing the behaviour of dengue fever. After that, the 
studies on TB began to model by the SEIR models. Chavez and Feng [33] focused on four 
models to understand the disease transmission dynamics of TB. Röst and Wu [34] proposed 
a new SEIR model in which the infectivity depends on age. Dontwi et al. [35] described the 
spreading of TB in Amansie West District Ghana by using the standard SEIR model. Yali 
Yang et al. [36] evaluated the cost of control strategies by using an SEIR model. Side et al. [37] 
proposed a SIR and an SEIR models for TB and analysed these models. Zhang et al. [38] set up 
a new mathematical model for TB in China using the data from January 2005 to 
December 2012. Xu et al. [39] proposed a mathematical model to investigate the control 
and precautions in Guangdong of China. Besides, many authors interested in global stability 
of TB models [40–43].

One of the most important factors in preventing and controlling the spread of tubercu-
losis is vaccination. Since 1921, the Bacillus Calmette-Guérin (BCG) vaccine remains the 
most widely used vaccine for the prevention of TB. Evidence has shown that BCG has 
a protective efficacy of about 75% in preventing some serious types of TB (e.g. meningitis) 
in children [44]. BCG is currently administered to newborns of high-risk populations as 
part of the World Health Organization (WHO) Expanded Programme on Immunization 
(EPI) [45]. Therefore, mathematical modelling of TB including vaccination has gained 
more importance to make more accurate predictions. In literature, there are many studies 
on this topic for various epidemics [46–50]. Specifically for TB, Liu et al. [51] proposed 
a mixed vaccination strategy that is the combination of constant vaccination and pulse 
vaccination. Egbetade and Ibrahim [52] set up a new mathematical model incorporating 
treatment, migration and vaccination. Rangkuti et al. [53] explained the spread of TB in 
North Sumatera Indonesia using VSEIR, which was created by adding the vaccination 
parameter to the SEIR model. Egonmwan et al. [54] formulated a mathematical model that 
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incorporates vaccination of newborn children and older susceptible individuals into the 
transmission dynamics of TB in a population.

Most of the epidemic diseases are modelled by a system of nonlinear ordinary 
differential equations with respect to model parameters and state variables. The main 
problem in these models is to determine the model parameters that describe the beha-
viour of the model in a realistic way. Generally, these parameters are adjusted by using 
nonlinear optimization techniques. Obtaining the parameters is important to calculate 
the basic reproduction number, R0, which represents the expected number of new cases 
of infectious generated by an infected individual. R0 is a key to understand how fast the 
disease will spread and the impact of control strategies. If R0 > 1, disease breaks out into 
epidemics, but R0 < 1, disease dies out.

TB is a lethal disease and is still struggled hard to control for some countries. Even 
though TB is controlled in Turkey, the geopolitical position of the country and letting in too 
many immigrants always has put it at risk. Therefore, the development of researches and 
prevention strategies should be continued. Although the studies [55,56] have been success-
fully used to describe the spreading of TB in Turkey, in these models, the assumption of 
absence of some factors such as the birth and the death rate, exposed individuals and 
prevention, lead to unrealistic estimations. Therefore, in this paper, TB disease in Turkey 
has been analysed by three epidemiological models (a modified SIR, an SEIR, and a BSEIR) 
to obtain more realistic predictions. Our aim is to investigate and discuss the characteristics 
of all three models regarding TB in Turkey, the information they provide and the situations 
in which the models are used. Besides, one of our main interests is remarking the effect of 
vaccination on the propagation of virus. In the modified SIR model, the population has 
been characterized by a death rate and a birth rate equal to the death rate. Through using 
the SEIR model, it has been included a latent or incubation time which means a certain time 
for an infected individual to become infectious. The control of the spread of TB through 
BCG vaccination therapy has been investigated with the BSEIR model. Besides, the model 
parameters have been determined by fitting the real data reported by the WHO [57–67]. 
The obtained results concluded that the basic reproduction number for all three models is 
R0 < 1. This means that the disease in Turkey is not alarming, but since the number of 
patients does not decrease dramatically, the control strategies should be continued. The 
stability analysis of the disease-free equilibrium and endemic equilibrium points is inves-
tigated for all three models. Moreover, the sensitivity analysis of the model parameters has 
been performed and their simulation results have been plotted. In addition, the %95 
confidence interval estimate graphs have been presented. The computations show that 
the predictions produced by all three models approximate the real data very well. Besides, it 
is emphasized that the model including the vaccination factor (the BSEIR) presents more 
realistic approaches. Furthermore, based on our literature review, such a comprehensive 
study is not worked through TB for Turkey so far.

The paper is organized as follows: In Section 2, the models, the modified SIR, the SEIR, 
and the BSEIR, for describing the dynamics of Tuberculosis are introduced and the 
equilibria and stability analysis of the models are studied. In addition, the sensitivity 
analysis of the parameters of the models is investigated. Then, the numerical simulations 
of all three models are presented and discussed how this is fitted against the data available 
in Turkey in Section 3. Besides, the predictions of the three models are compared and the 
effect of vaccination is remarked. Finally, it is concluded the paper in Section 4.
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2 Material and methods

2.1. Mathematical modelling

2.1.1. The modified SIR model
Since the basic SIR model proposed by Kermack and McKendrick neglects any natural 
deaths and births, some authors modified the model by considering a population by 
a death and a birth rates. Thus, the nonlinear system of differential equations including 
the death and the birth rates for TB is given by 

dSðtÞ
dt ¼ bN � βSðtÞIðtÞ=N � μSðtÞ

dIðtÞ
dt ¼ βSðtÞIðtÞ=N � ðγþ μÞIðtÞ

dRðtÞ
dt ¼ γIðtÞ � μRðtÞ

(1) 

with subject to 

Sð0Þ � 0; Ið0Þ � 0 and Rð0Þ � 0;

where β, γ, μ, and b are the transmission rate, the recovery rate, the birth rate and the death 
rate, respectively. In this model, it is assumed that the death and the birth rates are equal to 
each other. This model comprises three subgroups: SðtÞ represents the number of non-
infected but liable to infection in the population at time t, IðtÞ is the number of the infected 
individuals who can transmit the disease to the susceptible individuals in the population 
and RðtÞ is the recovered individuals who have been immunized and they are not able to 
infect again. The total population which is homogeneous and isolated is denoted by N ¼
SðtÞ þ IðtÞ þ RðtÞ for all t. The transmission coefficient β estimates the probability of 
getting the disease in contact between a susceptible and an infectious individuals. This 
model does not take into account age, vaccination or waning immunity. Since β and γ are 
the transition rate, are stated as probabilities, their range is 0< β; γ< 1.

Equilibrium points and stability. The dimensionless form of the system (1) is 
presented by 

dSðtÞ
dt ¼ � βSðtÞIðtÞ þ μ 1 � SðtÞð Þ

dIðtÞ
dt ¼ βSðtÞIðtÞ � ðγþ μÞIðtÞ

(2) 

where RðtÞ ¼ 1 � SðtÞ � IðtÞ. The third equation in system (1) can be omitted because 
the first two equations do not depend on it. To find the equilibrium points, the system (2) 
should be equated to zero: 

dSðtÞ
dt
¼

dIðtÞ
dt
¼ 0 

Then the equilibrium points are obtained, namely disease-free equilibrium (DFE) and 
endemic equilibrium (EE), respectively: 
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D1 ¼ S�1; I
�
1

� �
¼ 1; 0ð Þ; and D2 ¼ S�2; I

�
2

� �
¼

γþ μ
β

;
μ β � γ � μð Þ

β μþ γð Þ

� �

: (3) 

The Jacobian matrices for the system (2) are evaluated at the DFE and the EE as follows: 

JðD1Þ ¼ J S�1; I
�
1

� �
¼

� μ β
0 β � γ � μ

2

4

3

5;

JðD2Þ ¼ J S�2; I
�
2

� �
¼

� μβ
μþγ � γ � μ

μ β� γ� μð Þ

μþγ 0

2

6
4

3

7
5:

In order to the equilibrium points of the system (2) are stable, the eigenvalues must be 
negative or have a negative real part [68]. The eigenvalues can be obtained by solving the 
characteristic equation λ2 � TrðJÞλþ detðJÞ ¼ 0. Since the eigenvalues must satisfy the 
rule stated above, detðJÞ> 0 and TrðJÞ< 0 must be proven. 

detðJD1Þ ¼ � μðβ � γ � μÞ> 0;

and 

TrðJD1Þ ¼ β � γ � 2μ< 0; μ > 0:

Hence, β
γþμ < 1. 

detðJD2Þ ¼ μðβ � γ � μÞ> 0;

and 

TrðJD2Þ ¼
� μβ
μþ γ

< 0; μ > 0:

Hence, β
γþμ > 1. 

This includes:
The DFE D1 is locally asymptotically stable if and only if β

γþμ < 1, otherwise unstable. 

The EE D2 is locally asymptotically stable if and only if β
γþμ > 1, otherwise unstable.

Here, β
γþμ is a threshold value, called the basic reproduction number R0, which 

has an important role in determining dynamics of the disease and is used for 
prevention strategies. It helps to decide whether the disease spreads or eradicates. 
If the basic reproduction number is less than 1, then the disease will not spread in 
the population and dies out. Otherwise, the disease breaks out into an epidemic. 
Therefore, R0 is a crucial significance in mathematical and biological aspects.

2.1.2. The SEIR model
The SEIR epidemic model is a generalization of the SIR model. This model on the spread 
of TB consists of four compartments, namely susceptible ðSðtÞÞ, Exposed ðEðtÞÞ, Infected 
ðIðtÞÞ and Recovered ðRðtÞÞ, can be interpreted as follows: 
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dSðtÞ
dt ¼ bN � βSðtÞIðtÞ=N � μSðtÞ

dEðtÞ
dt ¼ βSðtÞIðtÞ=N � ðPþ μÞEðtÞ

dIðtÞ
dt ¼ PEðtÞ � ðγþ μÞIðtÞ

dRðtÞ
dt ¼ γIðtÞ � μRðtÞ

(4) 

with subject to 

Sð0Þ � 0; Eð0Þ � 0; Ið0Þ � 0; and Rð0Þ � 0;

where a new compartment EðtÞ which denotes the individuals who are infected but 
the symptoms of the disease are not yet visible and the parameter P is the rate at 
which the exposed individuals become infective so that 1

P 
is the mean latent period. 

The transmission rate, the recovery rate, the birth and death rates are represented 
by β, γ, μ and b, respectively. This model assumes that the death and the birth rates 
are equal to each other. The total population which is homogeneous and isolated is 
denoted by N ¼ SðtÞ þ EðtÞ þ IðtÞ þ RðtÞ for all t. In this model, the other factors 
such as age, sex, vaccination, etc. are neglected.

Equilibrium points and stability. The dimensionless form of the system (4) is 
presented by 

S0 ¼ � βSðtÞIðtÞ þ μ 1 � SðtÞð Þ

E0 ¼ βSðtÞIðtÞ � ðPþ μÞEðtÞ

I0 ¼ PEðtÞ � ðγþ μÞIðtÞ

(5) 

where RðtÞ ¼ 1 � SðtÞ � IðtÞ � EðtÞ. The fourth equation in system (4) can be omitted 
because the first three equations do not depend on it. To find the equilibrium points, the 
system (5) should be equated to zero: 

dSðtÞ
dt
¼

dEðtÞ
dt
¼

dIðtÞ
dt
¼ 0 

Then the equilibrium points are obtained, namely DFE and EE, respectively: 

D1 ¼ ðS�1;E�1; I�1Þ ¼ ð1; 0; 0Þ;

D2 ¼ ðS�2;E�2; I�2Þ ¼
1

R0
;
μ R0 � 1ð Þ

R0 εþ μð Þ
;
μ R0 � 1ð Þ

β

� �

:
(6) 

Here, R0 ¼
βε

γþμð Þ εþμð Þ
is the basic reproduction number [69]. The threshold quantity ðR0Þ

can be interpreted as the product of the contact rate ðβÞ and average fraction 2
2þμ

� �

surviving the incubation period and average infectious period 1
γþμ

� �
[35]. The Jacobian 

matrices for the system (5) are evaluated at the DFE and the EE as follows: 
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JðD1Þ ¼ J S�1;E
�
1; I
�
1

� �
¼

� μ 0 � β
0 � μ � P β
0 P � μ � γ

2

4

3

5;

JðD2Þ ¼ J S�2;E
�
2; I
�
2

� �
¼

� μR0 0 � β
R0

μðR0 � 1Þ � μ � P
β

R0
0 P � μ � γ

2

6
4

3

7
5:

In order to the equilibrium points of the system (5) are stable, the eigenvalues must be 
negative or have a negative real part [68]. The eigenvalues can be obtained by solving the 
characteristic equation corresponding to JðD1Þ and JðD2Þ. 

i. Stability analysis of DFE Characteristic equation for D1 is 

ðμþ λÞ½λ2 þ ðγþ 2μþPÞλþ ðμþPÞðμþ γÞð1 � R0Þ� ¼ 0: (7) 

Then the eigenvalues are 

λ1 ¼ � μ;

λ2 ¼
1
2 ½� ðγþ 2μþPÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðγþ 2μþPÞ
2
� 4ðμþPÞðμþ γÞð1 � R0Þ

q

�;

λ3 ¼
1
2 ½� ðγþ 2μþPÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðγþ 2μþPÞ
2
� 4ðμþPÞðμþ γÞð1 � R0Þ

q

�:

(8) 

λ1 and λ2 are negative, clearly. λ3 < 0 only for R0 less than 1. Hence, D1 is locally 
asymptotically stable if and only if R0 < 1, otherwise unstable. 

ii. Stability analysis of EE 

Characteristic equation for D2 is 

λ3 þ ðPþ γþ μð2þ R0ÞÞλ2 þ μR0ðPþ γþ 2μÞλþ μðμþPÞðμþ γÞðR0 � 1Þ ¼ 0:
(9) 

Methods that allow determining whether all roots have negative real parts and ensuring 
the stability of the system without solving the characteristic equation are of great 
importance. The Routh-Hurwitz criterion, which contains the necessary and sufficient 
conditions for the stability of the system, is one of these methods.

Theorem 2.1. (Routh-Hurwitz Stability Criterion) [70]
Given the polynomial, 

PðλÞ ¼ λn þ a1λn� 1 þ . . .þ an� 1λþ an; (10) 

where the coefficients ai are the real constants, i ¼ 1; . . . ; n, define the n Hurwitz matrices 
using the coefficient ai of the characteristics polynomial:  
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H1 ¼ a1½ �; H2 ¼
a1 1
a3 a2

� �

, H3 ¼

a1 1 0
a3 a2 a1
a5 a4 a3

2

4

3

5 and Hn ¼

a1 1 0 : 0
a3 a2 a1 : 0
a5 a4 a3 : 0
: : : : :

0 0 0 : an

2

6
6
6
6
4

3

7
7
7
7
5

where aj ¼ 0 if j > n. All the roots of the polynomial PðλÞ are negative or have negative reel 
part if and only if the determinants of all Hurwitz matrices are positive;    

detHj > 0; j ¼ 1; 2; . . . ; n:

The Routh-Hurwitz criteria for which n ¼ 3 taken can be simplified as follows 

detH1 ¼ a1 > 0 

detH2 ¼ det a1 1
a3 a2

� �

¼ a1a2 � a3 > 0 

detH3 ¼ det
a1 1 0
a3 a2 a1
0 0 a3

2

4

3

5 ¼ a3ða1a2 � a3Þ> 0; ða3 > 0Þ:

From characteristic equation (9), a1 ¼ Pþ γþ μð2þ R0Þ> 0 is provided. It is clear that 
a1a2 � a3 > 0 for values a2 ¼ μR0ðPþ γþ 2μÞ and a3 ¼ μðμþPÞðμþ γÞðR0 � 1Þ. 
Hence, a3 > 0 if and only if R0 > 1: Hence, it can be concluded that:

The EE D2 is locally asymptotically stable if and only if R0 > 1, otherwise unstable.

2.1.3. The BSEIR model
In this subsection, to investigate the effect of vaccination on the behaviour of TB, BSEIR 
model proposed by Liu et al. [51] can be described by the dynamic system of differential 
equations as follows: 

dBðtÞ
dt ¼ Λp � kBðtÞ

dSðtÞ
dt ¼ kBðtÞ þ Λð1 � pÞ � βSðtÞIðtÞ=N � μSðtÞ

dEðtÞ
dt ¼ βSðtÞIðtÞ=N � ðPþ μÞEðtÞ

dIðtÞ
dt ¼ PEðtÞ � ðγþ μþ dÞIðtÞ

dRðtÞ
dt ¼ γIðtÞ � μRðtÞ

(11) 

with subject to 

Bð0Þ � 0; Sð0Þ � 0; Eð0Þ � 0; Ið0Þ � 0 and Rð0Þ � 0;

where the parameters p ð0< p< 1Þ and Λ denote the fraction of the newborns 
vaccinated successfully and the recruitment rate, respectively. Since the positive effect 
of BCG vaccination is limited, the vaccinated successfully individuals become sus-
ceptible again by the rate k. The transmission rate, the recovery rate, the natural 
death rate and the disease-induced death rate are represented by β, γ, μ and d, 
respectively. The model comprises five subgroups: BCG vaccinated BðtÞ, Susceptible 
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SðtÞ, Exposed EðtÞ, Infected IðtÞ and Recovered RðtÞ. In addition to the SEIR model, 
the BSEIR model includes the BCG vaccinated subgroup which denotes the vacci-
nated newborns successfully. In the BCG protection period, they will not get infected 
even if they contact infected individuals when the vaccination provides immunity to 
all of them. The total population, N ¼ BðtÞ þ SðtÞ þ EðtÞ þ IðtÞ þ RðtÞ, changes with 
respect to time since the natural death rate and the birth rate do not have taken 
equally. Besides, since the vaccination is thought to prevent for only 10 to 15 years 
and the natural death of children is about %1, the natural death rate in subgroup BðtÞ
is neglected.

Equilibrium points and stability. To find the equilibrium points, the system (11) 
should be equated to zero: 

dBðtÞ
dt
¼

dSðtÞ
dt
¼

dEðtÞ
dt
¼

dIðtÞ
dt
¼

dRðtÞ
dt
¼ 0 

Then the equilibrium points are obtained, namely DFE and EE, respectively: 

D1 ¼ b�1; s�1; e�1; i�1; r�1
� �

Þ ¼
Λp
k ;

Λ
μ ; 0; 0; 0

� �
;

D2 ¼ b�2; s�2; e�2; i�2; r�2
� �

¼
Λp
k ;

NΛ
βi�2þNμ ;

βΛi�2
ðβi�2þNμÞðPþμÞ ; i

�
2;

γi�2
μ

� �
;

(12) 

where i�2 ¼
βPΛ� NμðPþμÞðμþdþγÞ

βðPþμÞðμþdþγÞ . We can obtain the basic reproduction number R0 by 
using the next-generation matrix [71]: 

R0 ¼ ρðFV � 1Þ ¼
βPk

ðγþ μþ dÞðPþ μÞðμpþ kÞ
; (13) 

where ρ denotes the spectral radius and the matrices F and V are given by 

F ¼ 0 βk
μpþk

0 0

� �

, V ¼ Pþ μ 0
� P μþ d þ γ

� �

. 

The Jacobian matrix for the system (11) is evaluated at the EE as follows: 

JðD2Þ ¼

� k 0 0 0 0
k � μ 0 � βΛ

Nμ 0

0 0 � ðPþ μÞ βΛ
Nμ 0

0 0 P � ðγþ μþ dÞ 0
0 0 0 γ � μ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

:

Solving detðJ � λIÞ ¼ 0, the characteristic equation is 

ð� k � λÞð� μ � λÞ2ðλ2 þ a1λþ a2Þ ¼ 0 

where 

a1 ¼ γþ 2μþ d þP;

a2 ¼ ðPþ μÞðγþ μþ dÞ �
PβΛ
Nμ

:
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Roots of the characteristic equations are λ1 ¼ � k, λ2 ¼ � μ and λ3 ¼ � μ are negative and 
other two roots satisfies the following quadratic equation 

λ2 þ a1λþ a2 ¼ 0: (14) 

Clearly, if a1 > 0 and a2 > 0, two roots of (14) will be negative. Hence, D1 is locally 
asymptotically stable if and only if R0 < 1, otherwise unstable.

2.2. Numerical solution and estimation of model parameters

The models in the present work have been numerically solved using software MATLAB 
R2019b by the command ‘ode15s’. The reason for choosing this command is the stiffness of 
differential equation systems that generate the SIR, the SEIR and the BSEIR models. Since stiff 
problems are characterized by significantly different magnitudes of variation rates, the 
command ‘ode45ʹ may struggle to solve the system.

The model parameters have been adjusted based on TB incidence data taken from the 
WHO Global Tuberculosis Report [57–67] from 2005 to 2015. Some of the parameters have 
been obtained from the literature [72,73], as seen in Table 1 and others have been assumed or 
fitted from data. The death rate μ has been estimated at approximately μ ¼ 366;471

73;722;988 ¼ 0:005, 
where 366,471 is the number of death individuals and 73,722,988 is the population of Turkey 
in 2010 [73] as reference. The birth rate b is 0:01737 [73] so the recruitment rate is Λ ¼
1;280;806 per year (Λ ¼ b� N). Other parameters have been adjusted through the mini-
mization of the quadratic objective function 

ϕ ¼
Xn

i¼1
ðIi

c � Ii
dÞ

2 (15) 

using least square method. Here, Ii
d, Ii

c and n denote the actual TB infected case, the model 
solution at time ti and the number of available data, respectively. To minimize the 

Table 1. Model parameters and initial data.
Parameters/Initial 
data Description Value a Value b Value c Source

p The fraction of vaccinated successfully – - 0.948 Fitted
k Rate of waning immunity – - 0.054 Fitted
β Transmission rate of infected population 0.872 0.872 0.955 Fitted
P Rate of progression to infectious stage from 

the exposed
– 1.428 1.435 Fitted

γ Recovery rate 0.897 0.938 0.935 Fitted
μ Natural death rate 0.0049 0.0049 0.0049 [73]
d Disease-induced death rate – – 0.03 [57]
Bð0Þ Initial number of BCG Vaccinated – – 4,500,000 Assumed
Sð0Þ Initial number of susceptible 67,610,005 67,595,153 63,095,153 Assumed
Eð0Þ Initial number of exposed – 14,852 14,852 Assumed
Ið0Þ Initial number of infected 20,535 20,535 20,535 [57]
Rð0Þ Initial number of recovered 1,230,000 1,230,000 1,230,000 Assumed
R0 Reproduction number 0.9664 0.9211 0.9045 Calculated

aSIR Model 
bSEIR Model 
cBSEIR Model

188 Y. UCAKAN ET AL.



function (15) it has been used the command ‘nlinfit’ which solves nonlinear regression 
problems through the Levenberg-Marquardt algorithm in MATLAB R2019b.

2.3. Sensitivity analysis

Sensitivity analysis provides to analyse the effect of each parameter on disease 
transmission and prevalence. It is commonly used to determine the robustness of 
model predictions to parameter values because of errors in data collection and 
assumed parameters. It is important to determine parameters that have a high 
impact on R0 and should be targeted by intervention strategies. Therefore, here, 
the partial derivatives of the basic reproduction number R0 with respect to model 
parameters p, k, β and γ have been calculated. Since @R0

@k > 0, increasing k means 
increasing R0. It shows that the number of infected will increase faster. Parameter p 
is the fraction of vaccinated successfully and @R0

@p < 0, and parameter γ is the 

recovery rate and @R0
@γ < 0, also. Hence, it can be said that the total number of 

infected populations can be reduced by increasing the parameters p and γ. Besides, 
being @R0

@β > 0, it is meant that the infection can be reduced by decreasing the 
transmission rate β.

To estimate the relative change in a variable when parameters change, sensitivity 
indices should be calculated. The calculation of these indicates has been executed by 
means of the following definition. 

Definition. The normalized forward sensitivity index of R0, which is differentiable with 
respect to a given parameter σ, is defined by 

SR0
σ ¼

σ
R0

@R0

@σ
(16) 

[71].

The obtained sensitivity indices of the basic reproduction number R0 for the baseline 
model parameters calculated by the formula (16) are presented in Table 3.

3. Results and discussion

In this section, to illustrate the numerical results for all three models, initial data have 
been taken as the following values. Since the epidemic data from 2005 to 2015 have been 
taken into account, the total initial population has been accepted as Nð0Þ ¼ 68;860;540 as 
the same as the reported population of Turkey in 2005 [72]. The initial infected popula-
tion was given in the report [57] as Ið0Þ ¼ 20;535. Eð0Þ has been assumed by comparing 
the rate of the infected to exposed individuals in literature and adapting to data in 
Turkey. Rð0Þ has been assumed by taking into account recovered individuals by the 
rate of success of therapy before 2005, average life span and natural death rate. Bð0Þ has 
been estimated considering the number of newborns in recent years reported by the 

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 189



Turkish Statistical Institute [74]. For the initial susceptible populations for the SIR, the 
SEIR and the BSEIR are given by, respectively, 

Sð0Þ ¼ N � Ið0Þ � Rð0Þ;
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Figure 1. The bar diagrams for the model predictions and reported infected data.
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Figure 2. The behaviours of compartments population over time for the SIR model.
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Sð0Þ ¼ N � Eð0Þ � Ið0Þ � Rð0Þ;

Sð0Þ ¼ N � Bð0Þ � Eð0Þ � Ið0Þ � Rð0Þ:

As indicated in Section 2.2, the parameters β; γ;P; p; k are fitted from real data by 
using the minimization function (15). The fitted parameter values and initial data have 
been listed in Table 1.

The epidemic models generated by the systems (1), (4) and (11) have been solved by 
MATLAB R2019b using command ‘ode15s’. This command uses numerical backward 
differentiation formulas with a maximum order of k ¼ 5 using a quasi constant step 
method. Since the timelines of real incidence data are according to years, the timelines of 
obtained numerical solutions have been taken by specifying the interval of integration as 
a vector of years in the ode15s.

(Figure 1) presents the bar diagram of the per year total infection of real cases and 
model predictions for all three models. The obtained results revealed that the model 
predictions approximate the real data very well.

In (Figures (2–4)), it is plotted graphs to show the behaviours of all groups of 
individuals for all three models. The variation of SðtÞ, IðtÞ and RðtÞ for the modified 
SIR model is displayed in (Figure 2). As seen in the figure, the population of infected with 
TB has decreased and hence, the populations of recovered have increased. With this 
increase, a decrease in the number of susceptible populations is observed. Therefore, it is 
concluded that the TB disease is under control. Also, the behaviour of the compartments 
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Figure 3. The behaviours of compartments population over time for the SEIR model.
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of the SEIR model given by (Figure 3) is similar to the SIR model. Additionally, the 
exposed population has been decreasing since the infected individuals have been decreas-
ing. However, if the absence of control strategies such as treatment, vaccination, etc., the 
infected individuals in the population will increase, and therefore, TB becomes an 
epidemic.

The behaviour of the compartments of the BSEIR model has been simulated in (Figure 
4). Unlike the SIR and the SEIR models, the BSEIR model has included the vaccination 
rate, and the birth and the death rates are not equal to each other in this model. For the 
prevention of TB, the BCG vaccine is widely used, which is 80% effective in preventing 
TB and the duration is about 10 years [75]. Therefore, vaccination is one of the treat-
ments for TB patients and hence, an assumption for the transfer of a proportion of the 
susceptible population to the vaccination class is considered. As can be seen in (Figure 4), 
the BðtÞ class is increasing. However, since the population is not constant, SðtÞ class 
shows an increase. The fact that population growth does not have a negative effect on the 
number of patients due to the vaccination factor. Since the high recovery rate and the 
effect of the vaccine, the number of infected decreases.

The behaviour of infected individuals for all three models is plotted in (Figure 5). As 
displayed in the figure, the reported real incidence data and the obtained predictions for 
all three models are in good agreement. From the figure, it can be seen the superiority of 
the BSEIR model when compared to the SIR and the SEIR models. The factors that make 
the BSEIR model more realistic are the active TB vaccine is included in the model and the 
population is not constant. Since BCG vaccination is used in Turkey for a long time, 
when taking into account the vaccination rate has been revealed more realistic 
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Figure 4. The behaviours of compartments population over time for the BSEIR model.
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predictions. Although the estimates obtained from the SIR and the SEIR models are close 
to the real data, it may not provide reliable solutions because of ignoring the vaccination.

To show accuracy of the numerical solutions of the SIR, the SEIR and the BSEIR, the 
relative errors are calculated by 
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Figure 5. Variation of the infected population for three models and reported infected data.
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Figure 6. The total number of infected individuals for different values of β and γ (SIR model).
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hðtÞ ¼
jIcðtÞ � IdðtÞj

IdðtÞ
; (17) 

where IcðtÞ and the IdðtÞ are the model prediction and the corresponding data at time t, 
respectively. The reported infected data, model predictions and relative errors have been 
listed in (Table 3). In the calculation, it is used the reported infected data from 2005 to 
2015 to compare the model predictions. According to values in (Table 3), the predictions 
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Figure 7. The total number of infected individuals for different values of β and γ (SEIR model).

Table 2. Prediction of infected population for the SIR, the SEIR and the BSEIR.
Year Reported data Numerical value a Error Numerical value b Error Numerical value c Error

2005 20535 20535 – 20535 – 20535 -
2006 20526 19621 0:04410 20543 0:00085 20693 0:00816
2007 19694 18743 0:04830 19537 0:00797 19594 0:00507
2008 18452 17896 0:03014 18486 0:00183 18456 0:00021
2009 17402 17084 0:01825 17477 0:00432 17389 0:00075
2010 16551 16306 0:01479 16522 0:00177 16404 0:00886
2011 15679 15561 0:00750 15618 0:00390 15501 0:01134
2012 14691 14848 0:01071 14762 0:00483 14677 0:00095
2013 13409 14167 0:05655 13952 0:04052 13928 0:03881
2014 13378 13516 0:01031 13187 0:01427 13253 0:00917
2015 12772 12894 0:00956 12463 0:02421 12649 0:00949
2016 12417 12300 0:00942 11779 0:05138 12111 0:02464
2017 12046 11733 0:02598 11132 0:07588 11635 0:03412
2018 11786 11192 0:05040 10520 0:10742 11220 0:04802
2019 – 10675 – 9942 – 10861 –
2020 – 10182 – 9396 – 10558 –
2021 – 9713 – 8879 – 10306 –
2022 – 9264 – 8391 – 10105 –
2023 – 8836 – 7930 – 9952 –

aSIR Model 
bSEIR Model 
cBSEIR Model
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for all three models approach the reported infected data 2016–2018 very well. Hence, it 
can be said that the model solution is reliable to predict the future behaviour of TB. The 
error percentages between 2005 and 2018 have been calculated as 0.83%, 0.83%, and 
0.45% for the SIR, the SEIR, and the BSEIR models, respectively, with the help of the L2 
norm. As indicated above, the obtained results show that the BSEIR model is more 
accurate than the SIR and the SEIR model.

On the other hand, the epidemic models which are discussed and our methodology 
have some limitations. The main limitations are to not assuming age-structure, emigra-
tion, seasonality, all individuals in the population have the same immune response and 
the same reaction to the disease for all three models. In addition to these drawbacks, the 
SIR model does not take into account the special features introduced by the presence of 
a large set of exposed individuals and, therefore, in the case of too much-exposed 
individuals, this makes poor predictions. Looking at the limitations of our methodology, 
the main limitation for all three models is to have limited data for predicting. We used the 
reported infected data from 2005 to 2015 since data for 2004 and before were not 
properly listed according to years. Besides, some initial conditions were assumed accord-
ing to the examples in the literature. This uncertainty has affected the prediction results 
directly. Therefore, to observe the errors of the predictions caused by the assumed 
parameters, the sensitivity analysis has been performed. In addition to these disadvan-
tages, fitting the parameters to the reported data has required a bit of computational 
work.

The dynamical behaviour of the model is defined by the basic reproduction number, R0, 
which is the average number of new infectious caused by a single infective. Since R0 depends 
on the model parameters, to investigate the effect of the parameters on disease transmission, 
the parameters p, k, β and γ were subjected to sensitivity analysis. (Figures (6–8)) show the 
effect of parameter variation on the disease for the SIR, the SEIR and the BSEIR models, 
respectively. Each figure displays the number of infected individuals with respect to parameter 
values in (Table 1) and the corresponding curves with a specific parameter increase of 2%. 
Clearly from (Figures (6–8) the decrease in the total number of patients is possible by 
increasing the recovery rate γ or decreasing the transmission parameter β. Considering the 
BSEIR model in Fig. 8, a certain increase in the number of patients is observed when the rate of 
successful vaccination p decreases. At the same time, the number of patients decreases when 
the parameter k, which refers to the rate of loss of effect of the vaccine, decreases. Besides, 
sensitivity indicates have been given in (Table 2). According to values in (Table 2), the 
parameter has a positive sign which means that R0 increases with the parameter. While the 

Table 3. Sensitivity indices of R0 with respect to model parameters.
Parameter Sensitivity index a Sensitivity index b Sensitivity index c

p – – −0.0792
k – – +0.0792
β +1 +1 +1
μ −0.0062 −0.0086 −0.0087
P – +0.0034 +0.0034
γ −0.9946 −0.7989 −0,9640

aSIR Model 
bSEIR Model 
cBSEIR Model
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parameter has a negative sign means that R0 decreases for higher values of the parameter. 
Further, this implies that decreasing (or increasing) of the parameter β by 10% will decrease 
(or increase) the basic reproductive number by 10%. Also, increasing parameter γ by 10% will 
decrease the basic reproduction number by 9.946%.

Finally, a statistical evaluation of the confidence of the predictions of the SIR, the SEIR, 
and the BSEIR models given by the %95 confidence interval estimate has been plotted in 
(Figure 9).
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Figure 8. The total number of infected individuals for different values of p, k, β and γ (BSEIR model).
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Figure 9. Confidence intervals for the SIR, the SEIR and the BSEIR models.
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4. Conclusion

In this research, the transmission dynamics of TB in Turkey have been analysed and 
discussed. For this purpose, three epidemic models (the SIR, the SEIR, and the BSEIR) 
have investigated by describing the spread of the epidemic in a certain population. By 
presenting the modified SIR model in which the population is fixed and the death and 
birth rates are equal has been started. After that, the SEIR model which includes the 
exposed group has been discussed. Finally, a more comprehensive model included the 
vaccination rate, the BSEIR, has been investigated and compared with the other models. 
The results showed that the obtained predictions by the BSEIR model more accurate than 
the other models. Since BCG vaccination is used in Turkey for a long time, the BSEIR 
model reveals more realistic predictions for the dynamics of the disease. The model 
parameters have been determined through the least square method by fitting the reported 
infected data. Besides, the mathematical analysis for all three models in terms of stability 
analysis and the importance of the reproduction number R0 have been discussed. As 
indicated before, the basic reproduction number has a key role in classifying the 
dynamical behaviour of the models. According to calculations, R0 < 1 has been calculated 
for all three models. It means that the status of TB in Turkey does not lead to an 
epidemic. However, if necessary precautions do not take, the infected people may 
increase, because the disease has not eradicated yet. Besides, the sensitivity analysis of 
the model parameters is performed and discussed in detail. Finally, a statistical inter-
pretation has been added by the confidence interval estimate. It is believed that this study 
helps to describe the course of TB disease and determine the precautions strategy.
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