
Citation: Ozmutlu, A. Wave

Propagation in Shear Beams

Comprising Finite Periodic Lumped

Masses and Resting on Elastic

Foundation. Symmetry 2023, 15, 17.

https://doi.org/10.3390/sym15010017

Academic Editor: Dumitru Baleanu

Received: 4 November 2022

Revised: 9 December 2022

Accepted: 14 December 2022

Published: 21 December 2022

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Wave Propagation in Shear Beams Comprising Finite Periodic
Lumped Masses and Resting on Elastic Foundation
Aydin Ozmutlu

Department of Civil Engineering, Corlu Engineering Faculty, Tekirdag Namik Kemal University,
Tekirdag 59860, Turkey; aozmutlu@nku.edu.tr

Abstract: In this study, the dispersion of an infinite shear beam with a lumped mass connected at
periodic distances and resting on an elastic foundation was examined. The effect of periodicity in the
finite region of the lumped masses on wave propagation was investigated through a one-dimensional
model. The dispersion relationship for Bragg scattering, which consists of one-dimensional periodic
lumped masses, was derived using the transfer matrix method. Subsequently, to evaluate the effect
of parameters such as the magnitude of the lumped mass and foundation stiffness on the dynamic
response of the shear beam, several simulations were performed. The band frequency characteristics
of the shear beam are demonstrated with respect to the variations in stiffness and mass. Using
the wave-based approach, the effect of periodic masses on wave propagation in a finite region of
an infinite beam was revealed. Periodic masses have been shown to have a positive effect on the
displacement amplitude; in other words, a lumped mass barrier is effective in providing wave
attenuation.

Keywords: wave dispersion; periodic structure; lumped mass; band gap; wave barrier; elastic
foundation

1. Introduction

Recently, the mechanical behavior of periodic structures has attracted increasing
attention from researchers. When the frequency spectrum of these structures is examined,
a banded formation is observed [1]. Both the material and the structure periodicity lead
to wave dispersion in such systems, where wave propagation does not occur at a certain
frequency range. This pattern of behavior, unique to periodicity, is beneficial for eliminating
the source of vibrations caused by dynamic effects in structures or reducing the effects of
vibrations.

Periodic structures can be defined as systems consisting of more than one identical
component [2]. Beams composed of identical structural members connected in the form
of beam segment-lumped mass introduce features of a periodic structure. When studies
in the literature are reviewed, it is observed that mathematical techniques for the solution
of periodic structure problems (crystal lattice structures, periodic electrical circuits, con-
tinuous transmission lines) have been developed since the beginning of the 20th century.
Brillouin investigated and analyzed the crystal lattice structure and periodic electrical
circuit problems and also explained the historical background of the subject in detail [3].

Examining simple models while explaining a physical problem is a commonly pre-
ferred method. In this study, the propagation of elastic waves along a beam with periodic
masses is investigated through a simple beam model that explained only the shear defor-
mation of the structure as a whole and the scattering of waves from lumped masses. This
established model aims to provide an insight into how periodic mass distribution affects
wave propagation. This model corresponds to a periodic structure that can be considered
a (1D) phononic crystal (PC) [1,2,4–6]. The formation mechanism of the band gap, which
results from structural periodicity (discontinuities) in the model, is based on wave interfer-
ence and Bragg scattering [7,8]. Therefore, the interference of incident waves and the waves
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scattered from masses can be analyzed within the framework of Bragg scattering [9]. The
interaction between the incident and reflected waves produces constructive/destructive
interference [7,9,10]. Goto et al. [11] numerically investigated the forced vibrations and
Bragg scattering of a PC rod within the framework of higher-order rod theories and verified
them with experimental results. Santos et al. [12] focused on the transmission of bending
vibrations between a finite number of periodic cells and an infinite periodic beam.

Periodic beams have been the subject of various studies; however, studies on periodic
beams resting on an elastic foundation are limited in the literature [13]. In preliminary work
on this subject [14], bending wave propagation in an infinitely periodic Euler–Bernoulli
beam resting on an elastic foundation was investigated using the Floquet theory. Yu
et al. [15] investigated the dispersion properties of the bending wave in infinitely long
beams with different periodic states and examined the effects of the elastic foundation
on the band gap. Han et al. [16] analyzed the frequency distribution relationship and
frequency response of beam foundation systems with hinged-joint periodicity and showed
that the presence of hinges greatly helps to achieve both lower and wider bandwidths
with stronger attenuation. Xiang and Shi [17] investigated the bending vibrations of binary
periodic beams on a Pasternak foundation and proposed a structural design to attenuate
the vibrations. Liu and Shi [18] examined wave propagation in periodic beams resting on
a nonlinear elastic foundation with a new perturbation approach and showed that it can
be used in the analysis of nonlinear periodic structures (such as buried pipelines and strip
foundations). In another study, dynamic problems of periodic Timoshenko beams resting
on a two-parameter elastic foundation were investigated with the same method [19]. Ding
et al. [20] investigated the effect of foundation parameters on the dispersion behavior of an
infinite biperiodic rods resting on a viscoelastic foundation.

Researchers have developed a variety of methods to reveal the band gap characteristics
in periodic structures and to ascertain the dispersion relationship. The transfer matrix
method (TMM) method is one of the most commonly used methods to reveal the dynamic
behavior of periodic structures and PCs [21–23]. The TMM was used to obtain the dis-
persion relationship observed in the wave propagation problems of both periodic rods
and beams [6,11,24–27]. In the TMM, which is used to model the periodic unit cell, the
model is reduced to an eigenvalue problem, and it is thus possible to obtain wave numbers
and dispersion curves. However, the TMM alone is not sufficient for the analysis of wave
propagation problems. Reflected and transmitted waves at structural discontinuities such
as hinges, resonators, and boundaries along structural members can be analyzed with the
wave-based (WB) approach. Various discontinuity situations [28,29] and elastic foundation
effects [30] for different beam theories were investigated with this method. In periodic
structures (especially in complex lattice structures), wave propagation properties were
investigated by using the TMM and WB approach together [31]. In addition, this approach
has been used to investigate wave propagation in 1D and two-dimensional (2D) periodic
structures to find natural frequencies and mode shapes [32,33]. The wave-based transfer
matrix method has also shown wide applicability in other studies to analyze the dynamic
response of large mesh structures [34] to solve the nonlinear vibration problem [35] and to
provide necessary vibration controls in the design and analysis of light beams [36–38].

In this study, the effect of wave propagation and finite periodicity on dispersion was
investigated in an infinitely long shear beam (SB) with lumped mass connected at periodic
distances in a finite region. The vibrations of a structure due to seismic effects from the
ground can be reduced by artificially placing lumped masses in a periodic way. Thus, the
main purpose of this research is to look into the effects of periodicity in the finite region of
an infinite beam resting on an elastic foundation. The transfer matrix (TM) for the beam
segment is derived from the solution of the governing equation, and the TM for the lumped
mass is obtained using the dynamic equilibrium and displacement conditions. Using the
derived TMs, the generalized transfer matrix (GTM) for the periodic unit cell was obtained
by a matrix multiplication operation. In the infinite beam, the transmission function (barrier
effect of periodic masses) and mode shapes in the finite region are determined by a wave-
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based approach. With the wave-based approach, the relationships between two uniform
beam sections and unknown wave coefficients are obtained by analyzing the reflection
and transmission of waves at discontinuities. Finally, the effect of periodic masses on the
wave propagation in a shear beam in a finite region, in other words, the barrier effect, is
presented.

2. Model and Solution Method

In this section, the dynamic stiffness matrix (DSM), responding to the structure in the
frequency domain, was obtained through the solution of the wave equation to determine
the dynamic behavior in the model discussed. Unlike the stiffness matrix (SM) used in
the conventional finite element method (FEM), it was obtained analytically by deriving it
from the solution of the governing equation of an element. The pioneering studies on the
application of the DSM to wave propagation problems were conducted by Doyle [39].

The TM obtained using the DSM for a shear beam with a periodic lumped mass
provides the exact solution of the dispersion relationship. To this end, the field transfer
matrix (FTM) was first derived for the shear beam, and then the GTM was obtained using
the PTF written for lumped masses.

Let us discuss the harmonic wave motion in an infinite shear beam with periodic
lumped masses presented in Figure 1. This beam is periodic in terms of material, geometry,
boundary condition, and spatial variation of the lumped mass along its axis. It was assumed
that there was a perfect adhesion between the lumped masses and the beam parts that
constituted this system. This beam, in which deformations depend only on shear force
V(x, t), has ρ material density and G shear modulus, and m lumped masses are periodically
repeated at ` intervals.

Figure 1. Analytical Model: (a) Shear beam with periodic lumped masses on the elastic foundation;
(b) unit periodic cell.

The free-body diagram of a differential element taken in the beam part during the
deformation under the effect of shear force is shown in Figure 2a.
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Figure 2. (a) Free-body diagram of the deformed element; (b) Nodal points for the nth beam part.

The equation of motion for the shear beam on the elastic foundation is as follows [40]:

∂V
∂x
− k f w = ρA

∂2w
∂t2 (1)

where w(x, t) is the vertical displacement, and A is the cross-sectional area of the beam. In
the study, one parameter foundation model is used and k f is the foundation parameter.
The constitutive equation is written as shown below:

V = κGA
∂w
∂x

(2)

where κ is a quantity depending on the cross-sectional shape and is called the shear
correction factor, and G is the shear modulus. If Equation (2) is written in its place in
Equation (1), the wave equation of the shear beam is obtained as follows:

∂2w
∂x2 = k f w +

1
β2

∂2w
∂t2 (3)

where k f = k f /κGA, β = cS
√

κ and cS =
√

G/ρ is the shear wave velocity in the medium.
By assuming that the time dependence of the behavior of the medium is harmonic in
the form of e−iωt, where ω = circular frequency, then the time dependence of force and
displacement can be taken as V(x, t) = V(x)e−iωt and w(x, t) = W(x)e−iωt, respectively.
In this case, the solution of the wave equation is obtained as follows:

W(x) = C1eir1x + C2eir2x (4)

where i is the imaginary unit and the characteristic roots are r1,2 = ±
√
(ω/β)2 − k f . For

wave propagation to occur, the square root expression must be positive. In this case, it
should be ω > ωcr =

√
k f /ρA. Where ωcr is the cut-off frequency and below this value,

the waves cannot propagate in an undamped system.
According to the situation in Figure 2b, the end displacements and forces can be

written as follows. Here, in the beam part, the end n is specified as node p, and the end
n + 1 is specified as node q.

x = x0 : w(x0) = Wp and Vp = V(x0) = −κGA
dW
dx

∣∣∣∣
x=x0

(5)

x = x0 + ` = x1 : w(x1) = Wq and Vq = V(x1) = κGA
dW
dx

∣∣∣∣
x=x1

(6)



Symmetry 2023, 15, 17 5 of 20

If the wave solution is substituted in Equations (5) and (6) and arranged in the matrix
form, the following relations are obtained:{

Wp
Wq

}
=

[
eir1x0 eir2x0

eir1x1 eir2x1

]{
C1
C2

}
(7)

{
Vp
Vq

}
= iκGA

[
−r1eir1x0 −r2eir2x0

r1eir1x1 r2eir2x1

]{
C1
C2

}
(8)

The DSM St, which gives the relationship between shear forces and displacements, is
obtained by eliminating the coefficients C1 and C2 from Equations (7) and (8) [41,42]. In
this case, the force-displacement vector relationship is as follows:{

Vp
Vq

}
= S2S−1

1

{
Wp
Wq

}
(9)

where St = S2S−1
1 is the DSM, S1 and S2 are spectral matrices obtained from geometric

and dynamic boundary conditions [39].

2.1. Field Transfer Matrix for the Beam Segment

The transition from the DSM to the FTM is possible because DSM is related to FTM.
Once the stiffness matrix of the beam segment is obtained, the corresponding transfer
matrix can be computed. Due to the dynamic FTM, if the section forces and displacements
(input end) of a beam at one end are known, the section forces and displacements (output
end) at the other end can be found.

The FTM establishes the following relationship between the state vectors at ends p
and q of any beam part [43]:

f(x1) = Tb(x1, x0) f(x0) (10)

where f(x0) is the initial state vector and defines the input end
{

W0, V0
}T , and f(x1) is the

final state vector and defines the output end
{

W1, V1
}T . Tb(x1, x0) is the FTM and a matrix

operator that performs the linear transformation between the domain and the target space.
The following relationships exist between the elements of this matrix and the elements of
the DSM:

Tb11 = −St11S−1
t12

Tb12 = −S−1
t12

Tb21 = St21 − St22St11S−1
t12

Tb22 = −St22S−1
t12

(11)

The explicit expression of the dynamic FTM is shown below:

Tb =

[
cos[r1(x1 − x0)]

1
κGAr1

sin[r1(x1 − x0)]

−κGAr1 sin[r1(x1 − x0)] cos[r1(x1 − x0)]

]
(12)

2.2. Point Transfer Matrix for the Lumped Mass

The PTM for the lumped mass will be written over the dynamic equilibrium equation
and continuity conditions. The free-body diagram of the lumped mass at the boundary
between any cell n and n + 1, namely, at the point x = xn, and the section forces acting on it
and the inertia force is presented in Figure 3.
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Figure 3. Free-body diagram for the lumped mass at the point x = xn.

At this stage, it has been assumed that there is perfect bonding between the adjacent
SB segments and the lumped mass. First, if the dynamic equilibrium condition is written to
obtain the PTM, the following relation is obtained:

V(xn
+) = V(xn

−) + mn
..
w(xn

−) (13)

where mn is the lumped mass at point n. Second, the displacement condition is as follows:

w(xn
+) = w(xn

−) = w(xn ) (14)

If the time-harmonic dependency e−iωt is omitted and rearranged in Equations (13)
and (14) above, the following relationship is written between the state vectors and the PTM:

f(xn
+) = Tp(xn)f(xn

−) (15)

where Tp(xn) is the PTM at the x = xn boundary, and its explicit expression is presented
below:

Tp(xn) =

[
1 0

−ω2mn 1

]
(16)

2.3. Generalized Transfer Matrix and Dispersion Equation for the Periodic Cell

The FTM in the beam segment and the PTM for the lumped mass at the boundary
were obtained. If these matrices are written from the start point to the end point for a finite
beam, the generalized transfer matrix for the unit cell is obtained.

f(x0 + `) = Tc(`)f(x0) (17)

In general, a periodic cell (lumped masses and beam part) consists of two-point
propagation matrices and one field propagation matrix.

Tc(`) = Tp(m/2)Tb(`)Tp(m/2) (18)

The unit cell forms a periodic structure that repeats itself at ` distance. The state vector
along this n cell periodic structure is written as follows:

f(x0 + n`) = Tn
c (`)f(x0), n = ±1,±2, . . . (19)

The periodic boundary conditions for the steady-state solution of the discussed in-
finitely long shear beam are written in the following way:

f(x0 + n`) = f(x0), n = ±1,±2, . . . (20)
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If the behavior concerning time is harmonic due to periodicity, it can be written using
the Floquet–Bloch theorem [3].

f(x0 + n`) = eikcn`f(x0) (21)

where kc is the wave number for the beam segment and the entire periodic structure it
forms. The Tn

c (`) matrix is the same in every cell of structures that are entirely periodic.
Therefore, n = 1 is taken, and the eigenvalue problem of the transfer matrix is obtained
using Equations (19) and (21).

det
(

Tc(`)− eikc`I
)
= 0 (22)

The eigenvalues and eigenvectors for the periodic cell can be calculated from Equation (22),
where Λc,12 = e±ikc` are the eigenvalues for the periodic cell. This equation gives the disper-
sion relation, which shows that the wave propagates differently at each frequency. When
the eigenvalues of the transfer matrix are computed, the wave numbers required to find
the wave phase velocities are obtained. The wave number for the periodic beam segment is
found using Equation (23):

kc =
1
`

arg(Λc,12) (23)

When the kc values found are examined, it is observed that they do not take continuous
values. Certain frequency values which kc takes continuous values are called the allowed
wave number values. The bands in the wave number spectrum are the result of the
interference of the waves scattered from different masses.

The allowed kc values are found by applying the periodic boundary conditions
(BC’s) (20). The periodic BC’s lead to the following equation, which may be derived
from Equation (21) by applying the Floquet–Bloch theorem:

kc = j2π/`, j = ±1, 2, . . . (24)

Accordingly, the allowed kc values given by Equation (24) repeat themselves with
period 2π/` and form a lattice in the wave number space. Furthermore, if kc is the allowed
wave number, kc ± j2π/`, j = 1, 2, . . . is also an allowed wave number. If we define the
prime value kc in the

(
−π

` , π
`

)
interval to be symmetrical for kc = 0, this definition interval

is called the 1st Brillouin zone. Thus, the wave propagation of an infinitely long periodic
beam can be examined. Furthermore, dispersion curves can be obtained by changing the
number of waves in the 1st Brillouin zone.

3. Wave Motion in the Finite Periodic Region

A formulation of the presence of periodic lumped masses in a 1D finite region, the
investigation of their barrier effect, the achievement of the transmission function (TF),
and the computation of displacement amplitudes associated with the wave motion are
presented in this section. To this end, the expressions required to describe the wave motion
in such a medium were first obtained.

3.1. Relationship between the State Vector and the Wave Coefficients

In a homogeneous shear beam on the linear elastic foundation, the relationship be-
tween the state vector f(x) and the wave coefficients a is desired to be established (Figure 4).
In this case, the displacement and shear force can be written in the following way:

w(x, t) =
(

A+eiksx + A−e−iksx
)

e−iωt (25)

V(x, t) = iks(κGA)
(

A+eiksx − A−e−iksx
)

e−iωt (26)
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where A+ and A− are complex wave coefficients, A+eiksx−iωt and A−e−iksx−iωt are har-
monic waves propagating in the positive and negative x-directions, respectively. When
the solution of the wave equation is obtained, it is seen that the characteristic roots of
r1,2 = ±iks correspond to the wave number, ks.

Figure 4. Wave propagation between the defined boundaries.

Generally, the state vector is written for the steady-state solutions as follows:

f(x) = XΛ(x)a (27)

The expressions used in Equation (27) here,

X =

[
1 1

iks(κGA) −iks(κGA)

]
Λ(x) =

[
eiksx 0

0 e−iksx

]
a = {A+, A−}

T

(28)

Now, let us establish the relationship between the state vectors and wave coefficients
defined at two points, such as x = XL and x = XR, defined in the same medium (Figure 4).

The wave coefficients can be uniquely determined from the two given boundary
conditions. Let us assume that the state vector at point x = XL is f(XL) and that it is known.
Then, it can be written in the following way:

f(XL) = XΛ(XL)a (29)

If the state vector f(XR) at point x = XR is calculated, the following expression is
obtained:

f(XR) = XΛ(XR)a
= XΛ(XR − XL)X−1f(XL)

(30)

where Λ(XR − XL) = diag
{

eiks(XR−XL), e−iks(XR−XL)
}

, or it can also be written as follows:

f(XR) = Tb(XR − XL) f(XL) (31)

where Tb(XR − XL) is the matrix that moves the state vector at point x = XL from left to
right in the same medium.

3.2. Reflection and Transmission at the Boundary

Now, let us examine the situation where the properties of the medium to the right
and left of a point like x = XB are the same, and there is a lumped mass m at the boundary
(Figure 5). At this point, let us assume that the wave coming from the left medium and
crossing the boundary is not reflected from the right medium (the absorbing boundary
condition). By Sommerfeld’s radiation condition, if no other obstacles are present, the
waves continue to propagate (outgoing waves) to infinity but do not return from infinity.
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Figure 5. Waves passing through the boundary and reflected at point x = XB.

Let us define the displacement vectors in the left and right media, respectively.

x < XB
− : W(x) = AL

+eiksx + AL
−e−iksx (32)

x > XB
+ : W(x) = AR

+eiksx (33)

The dynamic and geometric boundary conditions will be written to find the transmis-
sion and reflection coefficients. The state vector for x = XB

− to the infinitesimal left of the
boundary is written as follows:

f(XB
−) = XΛ(XB

−)aL (34)

and the state vector for x = XB
+ to the infinitesimal right is written in the following way:

f(XB
+) = XΛ(XB

+)aR (35)

where aL =
{

AL
+, AL

−
}T and aR =

{
AL
+, 0

}T are the wave coefficients vectors of the
medium to the left and right of the boundary, respectively. The lumped mass is taken into
account while writing the continuity conditions at the boundary.

If the continuity condition relations are given by Equations (13) and (14) are used, a
relation between the wave coefficient vectors is obtained as follows:

aR =
[
Λ(XB

+)
]−1

[X]−1Tp(XB)[X]
[
Λ(XB

−)
]
aL (36)

This relation can also be written in the following way:

aL = T(XB)aR (37)

where,

T(XB) =
{[

Λ(XB
+)
]−1

[X]−1Tp(XB)[X]
[
Λ(XB

−)
]}−1

(38)

is the transmission matrix of wave coefficient vectors from right to left. Equation (37) is
valid at any boundary, regardless of the absorbing boundary conditions. Now, let us find
the reflection and transmission coefficients using Equation (37) at a lumped mass boundary
(for the absorbing boundary assumption).

αtran =
AR
+

AL
+

=
1

T11
(39)

αre f =
AL
−

AL
+

=
T21

T11
(40)

where αtran is the transmission coefficient, αre f is the reflection coefficient.

3.3. Barrier Effect of Periodic Lumped Masses

At this stage, let us assume that ηmass finite number of lumped masses are periodically
connected on a beam with unchanged material properties at ` (the distance between the
centers of mass) intervals (Figure 6).
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Figure 6. Lumped mass barrier.

Let us find the transmission function Hbar(ω) along the barrier. The length of the
barrier Lbar can be calculated as follows depending on the mass number:

Lbar = XR
+ − XL

− = (ηmass − 1)` (41)

where XL
− is the x-coordinate of the point to the infinitesimal left of the first mass, and

XR
+ is the x-coordinate of the point to the infinitesimal right of the last mass. Let the wave

coefficient vector be aL =
{

AL
+, AL

−
}T in the beam to the left of the 1st mass in the barrier,

and let the wave coefficient vector be aR =
{

AR
+, 0

}T in the beam to the right of the last
mass. The state vector at point x = XL

− is as follows:

f(XL
−) = XΛ(XL

−)aL (42)

and the state vector at point x= XR
+ is written in the following way:

f(XR
+) = XΛ(XR

+)aR (43)

If the relation between the state vectors f(XL
−) and f(XR

+) is established by the
transfer matrix, the following Equation (44)

f(XR
+) = f(XL

− + (ηmass − 1)`)
= Tp(m/2)[Tc(`)]

(ηmass−1)Tp(m/2)f(XL
−)

(44)

can be written more simply as follows:

f
(
XR

+
)
= Tbarf

(
XL
−) (45)

where Tbar = Tp(m/2)[Tc(`)]
(ηmass−1)Tp(m/2) is the barrier transfer matrix and contains

the information carried by the state vector along the barrier. The relationship between the
wave vectors before and after the barrier can be obtained in the following way:

aR = [Λ(XR
+)]
−1

[X]−1f(XR
+)

= [Λ(XR
+)]
−1

[X]−1TbarXΛ(XL
−) aL (46)

This expression can be written as follows:

aR = IbaraL (47)

where Ibar = [Λ(XR
+)]
−1

[X]−1TbarXΛ(XL
−) is the transmission matrix of the wave coeffi-

cient vectors from left to right. Now let us find the wave coefficients for the waves passing
through the barrier and reflected.

AL
− = − Ibar(2, 1)

Ibar(2, 2)
AL
+ (48)

AR
+ = Ibar(1, 1)− Ibar(1, 2) · Ibar(2, 1)

Ibar(2, 2)
AL
+ (49)
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The transmission function, which gives the amplitude and phase relationship between
the wave coming to the barrier and passing through it, can be calculated using these
coefficients.

Hbar(ω) =
wout

win =
AR
+

AL
+

eik(XR−XL) (50)

where win and wout are the input and output displacements in the beam before and after
the barrier, respectively. The frequency band of a periodic structure and a finite periodic
structure can be compared using Equation (50).

Now, let us obtain the displacement amplitudes along the barrier. The coefficient func-
tions of structures within the barrier can be calculated recursively based on the relationship
between the coefficients to the left and right of a boundary point, such as x = XL. The
coefficient function and displacement in the first unit cell inside the barrier are obtained in
the following way:

a(1) =
[
Λ(XL

+)
]−1

[X]−1Tp(XL)[X]
[
Λ(XL

−)
]
aL (51)

XL
+ < x < XL

− + d : W(x) = a(1)(1, 1)eiksx + a(1)(2, 1)e−iksx (52)

By repeating this calculation method for (ηmass − 1) number of unit cells, the variation
of displacement amplitudes along the barrier is determined. The displacements in the
beam to the left and right of the barrier, respectively, are calculated as follows:

x < XL
− : W(x) = AL

+eiksx + AL
−e−iksx (53)

x > XR
+ : W(x) = AR

+eiksx (54)

4. Numerical Results

The behavior of a beam with periodic lumped masses having a unit cell design selected
as an example case is discussed in this section. The unit cell consists of two lumped masses
and a beam segment, as shown in Figure 1b. With a beam part length of ` and a shear wave
velocity of β, dimensionless quantities were defined as frequency η = ω`/(2πβ), wave
number Kc = kc` and foundation parameter K f = k f `

2. Furthermore, m was the lumped
mass, and mSB = ρAL was the mass of a pure beam segment, the ratio of the lumped mass
to the mass of the beam segment was defined as α = m/mSB. If the beam cross-section
is considered to be rectangular in the example discussed, the value κ = 5/6 ≈ 0.8

.
3 is

taken [44].
The results revealing the dispersion properties according to the dimensionless pa-

rameters defined for an infinitely long beam resting on an elastic foundation are given
for 0 < η < 1 (Figure 7). Figure 7a shows the dimensionless wave number Kc/π, and
Figure 7b,c show the dimensionless phase and group velocities, Cph/β and Cgr/β. Disper-
sion relations of the beam-elastic foundation interaction are given for different K f values.
The foundation stiffness values are taken from the study of Avramidis and Morfidis [45]
by referring the “very soft”, “medium” and “hard” soil categories. Depending on the K f
value, there is no wave propagation for below the dimensionless critical frequency called
the cut-off frequency ηcr =

√
K f /2π. It is obvious that the cut-off frequency relies on the

foundation stiffness and shear wave velocity. This interaction relationship shows that as
the foundation stiffness increases, the ηcr value increases and vice versa.
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Figure 7. Dispersion of infinite beam resting on elastic foundation (no lumped masses); (a) the
dimensionless wave number; (b) the dimensionless phase velocity and (c) the dimensionless group
velocity.

4.1. Frequency Spectrum of the Infinite Periodic Beam

The frequency spectrum for the shear wave propagating along the infinite periodic
beam (Figure 1b) is presented in Figure 8a. Dimensionless frequency η and dimensionless
wavenumber Kc define the abscissa and the ordinate, respectively. The value Kc = π
represents the boundary known as the 1st Brillouin zone. Beyond this value, function
Kc = Kc(η) repeats periodically along the vertical axis. When the frequency spectrum was
examined, it was observed that the wave numbers took values for certain frequencies. For
example, the second zone contains the Kc ∈ (π, 2π) interval. The nonlinearity of the curves
indicates that the medium is dispersive. While wave propagation occurs at frequencies
corresponding to the real valued wave numbers, this frequency range is called the “pass”
band. On the contrary, wave propagation does not occur at frequencies corresponding
to complex or pure imaginary wave numbers, and this range is the “stop” band of the
dynamic response. The formation of such a banded frequency spectrum arises because
of wave interference mechanisms caused by wave scattering and dispersion. If a beam
with homogeneous material having the same medium properties is considered and the
frequency spectrum is computed to make a comparison with a periodic structure, it is
observed that the behavior of the homogeneous beam is not dispersive and thus does not
have stop bands. Different α values do not significantly change the pass band initiation
except in the 1st Brillouin zone. In the 1st Brillouin zone, on the other hand, the ηcr value
changes depending on the α value, and as the α increases, the ηcr decreases. In the case
of elastic foundation, ηcr is computed numerically. For the value of K f = 0.05, which ηcr2
values are obtained depending on α are given in Table 1. It is shown that the presence of
masses reduces ηcr.
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Figure 8. Variation of (a) dispersion curves, (b) phase velocities according to the mass ratio in a
one-dimensional periodic structure.

Table 1. Variation of cut-off frequency according to the mass ratio in a one-dimensional periodic
structure for the value of K f = 0.05.

α 0 0.25 0.5 1 2

ηcr2 0.036 0.031 0.027 0.022 0.018

The variation of the phase velocity in the shear wave along the infinite periodic beam
is presented in Figure 8b. These waves propagate only for the frequencies in the pass bands,
and the phase velocity changes depending on the frequency and mass ratio. The effect
of the lumped masses on the phase velocity in the frequency-dependent pass bands or
how they lead to dispersion is observed here. For a nonzero mass ratio (α > 0), the waves
propagate at velocities slower than that of a shear wave in a homogeneous beam. It is
understood that as the mass ratio increases, the pass bands are relatively narrowed, the
masses act as a mechanical filter, and the phase velocities also decrease.

The effect of the mass ratio on dispersion, depending on whether there is an elastic
foundation or not, is shown in Figure 9. Thus, the effect of the elastic foundation on the
periodic beam’s behavior has been attempted to be revealed. For this purpose, the situation
was examined by taking two different mass ratios, α = 0.25 and α = 2. The presence of
the elastic foundation causes the formation of the low frequency band gap and this band
gap also shifts to the left as the magnitude of the masses increases (Figure 9a,b). At high
frequencies, the effect of the presence of the elastic foundation on dispersion decreases.
This low frequency band gap can be associated with the dynamic properties of elastic
metamaterials using elastic resonators, and additionally, these findings are in line with the
literature [8,15,20].
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Figure 9. Variation of (a) dispersion curves, (b) phase velocities depending to the mass ratio and
elastic foundation parameter for K f = 0.05 and without foundation.

4.2. Transmission Response of the Finite Periodic Region in an Infinitely Long Beam

The effect of periodicity in a finite region in an infinitely long beam will be examined
over three different types of barriers, each of which is composed of Nc = 1, 2, 5 cells,
respectively, as shown in Figure 10. The transmission function Hbar(ω) given by Equation
was evaluated in the same frequency interval as η ∈ (0, 2) provided that the mass ratio
α = 0.5 and foundation parameter K f = 0.05 in the unit cell was taken for each structure
discussed in Figure 10, and the results are presented in Figure 11. This equation can be
used to compare the frequency band response of an infinite periodic material with the
degree of fit of the corresponding transmission response of that material for the periodic
structure in a finite region consisting of several cells. Here, it is obviously seen that the
frequency response for barriers consisting of 1 or 2 cells does not fit well with the band
structure of the infinite periodic unit cell (Figure 11a,b). Nevertheless, the frequency band
transmission response of the barrier created with only 5-unit cells are highly compatible
with the response corresponding to the infinite medium. While the transmission value is
high at pass band frequencies, the transmission values are low at stop band frequencies.
These results lead to the conclusion that it is possible to improve or develop the design
of structures with finite periodicity using the information obtained from structures with
infinite periodicity. Furthermore, it is observed how effective the emerging Bragg scattering
mechanism is in the formation of a frequency band structure even at a finite periodicity
degree.

Figure 10. Barrier design with (a) 1, (b) 2, and (c) 5 cells in the finite region.
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Figure 11. Variation of the Hbar(ω) transmission function in the finite region for the mass ratio α = 1
and K f = 0.05 according to a (a) 1, (b) 2, and (c) 5-cell barrier.

4.3. Displacements in the Finite Periodic Region in an Infinitely Long Beam

The frequency-dependent variations of the displacement amplitudes associated with
wave motion for both the pass band and the stop band of periodic lumped masses in a
finite region on a barrier consisting of Nc = 5 cells were examined in this section. The fact
that the ratio of the lumped mass to the mass of the beam segment was α = 0.5 was defined
as the “normal state.” The variation of the displacements along the x-axis for α = 0.5 (the
normal case), 0.25 (lighter mass than the normal case), 1 (heavy mass), and 2 (even heavier
mass) ratios is presented in Figures 12–15. The same foundation parameter is taken for
all cases, which is K f = 0.05. The x-axis was examined by selecting it to remain within a
2Lbar = 10`—long region before the barrier and a Lbar = 5`—long region after the barrier.
An incident wave with the AL

+ = 1 unit amplitude was taken before the barrier to examine
the variation of W(x) along the x-axis. Before the barrier, the variation of W(x) shows the
interference pattern of the incident and reflected wave. The displacement amplitude was
constant since there was a single wave propagating to the right behind the barrier and there
was no material damping.
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Figure 12. Variation of displacement amplitudes under the barrier effect in the finite region for Case 1.

Figure 13. Variation of displacement amplitudes under the barrier effect in the finite region for Case 2.
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Figure 14. Variation of displacement amplitudes under the barrier effect in the finite region for Case 3.

Figure 15. Variation of displacement amplitudes under the barrier effect in the finite region for Case 4.

When Case 1 was examined, it was observed that the amplitude was close to 1 for the
frequency η ∈ (0, 0.7) in the first two pass bands and close to 0.5 in the third pass band
(Figure 12a,c,e). While the low-frequency incident wave was transmitted almost as it was,
although amplitudes increased inside the barrier at high frequencies, the displacements
had much less amplitude than 1 when they passed the barrier. For the frequency values
selected in the first three stop bands, the amplitudes quickly went to zero when they
passed the barrier (Figure 12b,d,f). While the displacement amplitude in the first stop band
approached zero at the end of the barrier, it became zero at the 3

5 Lbar of barrier length in
the second stop band and zero at the 3

5 Lbar of barrier length in the third stop band.
When Case 2 was examined, the amplitude was close to 1 for the frequency η ∈ (0, 0.77)

in the first two pass bands (Figure 13a,c). For low frequency values in the pass band, the
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incident wave was transmitted as it was, and the barrier had almost no effect. For the
selected frequency values in the stop band, the amplitudes quickly went to zero when they
passed the barrier (Figure 13b,d). For the “lighter mass” case, the displacement amplitude
in the first two stop bands approached or became zero, respectively, at the end of the barrier.
It was observed that the effect of the masses was relatively less compared to the “normal
state”.

When the “heavy mass” case was examined, the amplitude was very close to 1 for the
frequency selected in the first pass band, and the incident wave was transmitted as it was.
However, in the second pass band, the post-barrier amplitude decreased below 0.5 with the
effect of the masses (Figure 14a,c). Although the amplitudes increased inside the barrier at
high frequencies in the pass band, it was observed that the displacements had an amplitude
much less than 0.5 when they passed the barrier. For the frequency values selected in
the first two stop bands, it was found that the amplitudes quickly went to zero inside the
barrier (Figure 14b,d). The displacement amplitude became zero at the 4

5 Lbar parts of the
barrier in the first stop band and at the 3

5 Lbar parts of the barrier in the second stop band.
When the “very heavy mass” case was examined, it was observed that the amplitude

was close to 1 for the frequency selected in the first pass band and that the post-barrier
amplitude decreased below 0.5 with the effect of the masses for the frequency selected in
the second pass band (Figure 15a,c). It was revealed that although the amplitudes increased
inside the barrier for high frequencies in the pass band, the displacements decreased when
they passed the barrier. It was observed that the displacement amplitude decreased rapidly
until it reached the 3

5 Lbar part of the barrier in the first stop band and the 2
5 Lbar part of the

barrier in the second stop band, and it went to zero (Figure 15b,d).

5. Discussion and Conclusions

In this study, the dispersion phenomenon occurring in an infinitely long shear beam
with a periodic lumped mass and resting on an elastic foundation is investigated. The
influence of the periodically located lumped masses (in a finite region) on the wave atten-
uation is examined through the displacement response of the beam. The combination of
perfectly bonded lumped mass and a beam segment is used as a unit cell for the dispersion
analysis. The analytical solution is achieved by using the Floquet Theory and adopting the
Transfer Matrix method. A wave-based approach is implemented to obtain the reflection
and transmission of waves at the boundaries of the unit cell, thus, the effect of periodicity
in the finite region on wave transmission is examined.

The main results obtained can be listed as follows. The periodically placed lumped
masses revealed a banded structure in the frequency spectrum of the infinite beam. In case
of a homogeneous beam resting on an elastic foundation, the cut-off frequency is a constant
depending on the stiffness of the foundation. On the other hand, the cut-off frequency
decreases monotonically when the magnitude of the masses increases. It is shown that
the wave propagation occurs only in the pass bands, and the phase velocities decreases
with increasing magnitude of the masses. Furthermore, stop bands blocks wave energy
transmission, and periodic masses acts as a mechanical filter. The relative increase in the
magnitude of lumped mass leads to narrowing of the pass bands and a decrease in phase
velocities.

In the case of a periodic lumped mass in the finite region, the dynamic transmission
response is obtained through the ratio of the amplitude of the incident wave in front of
the barrier and the amplitude of the wave passing behind the barrier. Even if a region of a
limited number of unit cells are selected, i.e., 5-unit cells, it acts as a barrier, namely, the
transmission values decrease at stop band frequencies. Depending on the mass ratio, the
displacement amplitude behind the barrier is close to 1 at low frequency values in the pass
bands and well below 1 at high frequencies. For stop bands, the displacement amplitude
inside the barrier quickly approaches to zero.

The results given in terms of the present model include a limited frequency range
and cell number and are valid under some assumptions. In this sense, this approach may
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present an engineering sense for practical calculations, as it reveals important information
on the influence of the infinite and finite periodicity. The responses that are close to the
responses of infinite periodicity were achieved by a finite periodic design. As a result, it
can be concluded that vibration reduction can be acquired by including a periodicity in the
design despite the absence of dampers.
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