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a b s t r a c t

B-cell epitope prediction research has received growing interest since the development of the first
method. B-cell epitope identification with the aid of an accurate prediction method is one of the
most important steps in epitope-based vaccine development, immunodiagnostic testing, antibody
production, disease diagnosis, and treatment. Nevertheless, using experimental methods in epitope
mapping is very time-consuming, costly, and labor-intensive. Therefore, although successful predictions
with in silico methods are very important in epitope prediction, there are limited studies in this area.
The aim of this study is to propose a new approach for successfully predicting B-cell epitopes for
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, the SARS-CoV B-cell
epitope prediction performances of different fuzzy learning classification models genetic cooperative
competitive learning (GCCL), fuzzy genetics-based machine learning (GBML), Chi’s method (CHI),
Ishibuchi’s method with weight factor (W), structural learning algorithm on vague environment
(SLAVE) and the state-of-the-art ensemble fuzzy classification model were compared. The obtained
results showed that the proposed ensemble approach has the lowest error in SARS-CoV B-cell epitope
estimation compared to the base fuzzy learners (average error rates; ensemble fuzzy=8.33, GCCL=30.42,
GBML=23.82, CHI=29.17, W=46.25, and SLAVE=20.42). SARS-CoV and SARS-CoV-2 have high genome
similarities. Therefore, the most successful method determined for SARS-CoV B-cell epitope prediction
was used in SARS-CoV-2 cell epitope prediction. Finally, the eventual B-cell epitope prediction results
obtained for SARS-CoV-2 with the ensemble fuzzy classification model were compared with the epitope
sequences predicted by the BepiPred server and immunoinformatics studies in the literature for the
same protein sequences according to VaxiJen 2.0 scores. We hope that the developed epitope prediction
method will help design effective vaccines and drugs against future outbreaks of the coronavirus
family, especially SARS-CoV-2 and its possible mutations.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The immune system is a network of biological processes that
rotect an organism from various diseases. In organisms, it is
esponsible for preventing infections and eliminating established
nfections. There are 2 types of immune systems: innate and
daptive. Innate immunity is activated when an organism such
s a bacteria or a virus enters the body, and since it has no
mmunological memory, it cannot recognize the same pathogen
hen it is encountered again. Adaptive immunity comes into
lay in situations where innate immunity is insufficient, such as
iral infection, and since it contains immunological memory, it
an recognize pathogens previously encountered, so it creates an
mmune response more quickly [1,2].

∗ Corresponding author.
E-mail addresses: zeynepozger@ksu.edu.tr (Z.B. Ozger), pkaya@nku.edu.tr

P. Cihan).
ttps://doi.org/10.1016/j.asoc.2021.108280
568-4946/© 2021 Elsevier B.V. All rights reserved.
Antibodies in the blood and B/T white blood cells generate
adaptive immune responses [3]. Because B/T lymphocyte cells
contain memory, they are considered an important component of
the adaptive immune system. These lymphocytes provide a pro-
tective function by producing antibodies. Antibodies are proteins
that can recognize and bind biological substances called antigens.
Each antibody has a compatible antigen and can only recognize it.
In other words, individual antibodies are produced against each
antigen [4]. B/T cells have specific receptors on their surface, and
it is these receptors that enable them to recognize the antigen [5].
The part of antigens that binds to B/T cells or antibodies is called
an epitope [4].

Epitopes are parts of the antigen that interact with B-cell
receptors (BCRs). As seen in Fig. 1, B-cells are antibodies fighting
against bacteria and viruses by creating a protein that is struc-
tured in a Y shape. B-cells recognize antigens using membrane-
bound immunoglobulins (Igs). The antigen part of the B-cell that
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Fig. 1. Continues and discontinues B-Cell [7].

Fig. 2. Structure of SARS-CoV-2 [12].

binds to the immunoglobulin or antibody is called the B-cell
epitope. When antigens bind to the antibody, the B-cell is acti-
vated and proliferates. Some of the proliferating cells form plasma
cells, and some form memory cells. This immunological memory
provides a fast and effective response to pathogens previously
encountered [6].

B-cell epitopes are of 2 types, linear (continuous) and con-
formational (discontinuous) (Fig. 1). Although linear epitopes are
relatively few, it is important to identify these epitopes, as they
consist of peptides that can be easily used in antibody production.
Continuous epitope prediction is both more convenient and easier
to perform for antibody production [8].

Coronaviruses are single-stranded RNA viruses that are very
common in animals. It contains 4 basic structural proteins. Of
these, nucleocapsid (N), membrane (M), and envelope (E) proteins
are responsible for the assembly of the virion. The spike (S) pro-
tein on the surface allows the virus to attach to the target cell [9].
Coronaviruses are divided into 4 main types: alpha, beta, gamma,
and delta. Some alpha and beta species can cause respiratory tract
infections in humans [10]. Severe acute respiratory syndrome
coronavirus (SARS-CoV) and Middle East respiratory syndrome
coronavirus (MERS-CoV) belong to the beta coronavirus family
and have caused serious epidemic problems in the recent past.
Due to its high similarity to SARS-CoV, this virus has been named
SARS-CoV-2 by the Coronaviridae working group (CSG) of the
International Committee on Virus Taxonomy [11]. The structure
of SARS-CoV-2 is depicted in Fig. 2. The spike protein is the critical
determinant of the SARS-CoV-2 genome, as it interacts with the
host cell receptor.

Epitope data for SARS-CoV-2 are still limited, but since the
gene and protein sequences of the virus are known, epitope infor-
mation can be estimated by in silico analysis, taking into account
2

Fig. 3. Phylogenetic tree of beta coronaviruses [14].

past beta coronaviruses [13]. For this purpose, the sequence sim-
ilarity of SARS-CoV-2 to other coronavirus species was examined.
Considering the phylogenetic tree in Fig. 3, SARS-CoV-2 is more
similar to the SARS-CoV virus than MERS-CoV [14].

The treatment of epidemics can be provided by community
immunity or vaccination. Gaining community immunity requires
a long process [15]. Since the epidemic causes loss of life and
economic problems, it is important to develop an effective vac-
cine quickly. To develop a vaccine, it is necessary to identify
protective immunogens against pathogens [16]. There is limited
information as to which parts of the SARS-CoV-2 sequence are
recognized by human immunity. This information is important
for both vaccines and monitoring of mutations [17]. It is known
that early immune responses against SARS-CoV-2 are mediated
by IgM and IgA, while IgG responses are carried out 7–10 days
after infection. It has been reported that developing neutralizing
antibodies against the spike protein is important for an effective
vaccine [18]. It has been found that directing antibodies to the
receptor-binding domain and binding to spike trimers are impor-
tant for long-term protective immunity against COVID-19 [19].
B-cell memory can reactivate antigen-specific responses upon re-
exposure to infection [20]. Identifying conserved epitope regions
would be useful in generating resistant immunity not only for the
SARS-CoV-2 outbreak but also for ongoing virus evolution. Due
to their strong immune responses, in vaccine studies developed
for SARS-CoV and MERS, S, N, and M proteins were preferred as
antigens [21–23].

Epitope identification with traditional methods is performed
by experimental techniques, but this is a costly and
time-consuming process [17]. For epitope identification by tra-
ditional methods, it is necessary to experimentally confirm by in
vitro methods whether all possible subsequences in the protein
sequence are antigens. With in silico approaches, subsequences
that are less likely to be epitopes are eliminated using bioin-
formatics tools and historical data. Thus, the cost is reduced
by reducing the number of epitope candidates that need to be
examined by in vitro methods. [24]. Hereby, the determination
of protein regions that are likely to be epitopes contributes to
candidate vaccine and drug studies by narrowing the search space
for epitopes. The aims of this study are to compare the pre-
diction performance of fuzzy learning models for the prediction
of epitope regions and to propose a new ensemble method for
determining the epitope region by in silico analysis.

This study presents the following contributions and novelty:

• To determine SARS-CoV and SARS-CoV-2 B-cell epitope re-
gions by in silico analyzes;

• To compare the predictive success of fuzzy learning models
in identifying SARS-CoV B-cell epitope regions;

• To propose a novel ensemble approach to successfully pre-
dict SARS-CoV-2 B-cell epitope regions;

• To contribute to the development of new protein-based
vaccines against SARS-CoV-2 and future epidemics by iden-

tifying epitope regions;
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• To propose epitope candidates to assist biologists in devel-
oping a rapid and successful vaccine;

• It has been shown that more successful results are obtained
with the proposed ensemble method compared to other
studies in the literature;

• A statistically significant and robust ensemble approach has
been proposed to identify SARS-CoV and SARS-CoV-2 B-cell
epitope regions.

2. Related works

From the beginning of the SARS-CoV-2 epidemic, a lot of work
has been done in this area and continues to be done. Most of the
studies in this field are related to case/death estimation [25–28],
detection of COVID-19 from medical images [29–31] or estima-
tion of the number of vaccinated people [15]. There is a gap
in the literature on the determination of epitope regions by
in silico methods, which will be very beneficial to science and
health services in both vaccine and drug development against the
SARS-CoV-2 epidemics and future epidemics.

Authors in [32], in their study on epitope prediction, stated
that 2 different ways were followed for epitope prediction by
in silico analysis. The first of these is prediction methods based
on SARS-CoV immunological data due to its genetic similarity,
and the other is peptide binding prediction methods. The authors
reviewed studies with both methods and predicted epitopes.
Authors compared the epitopes obtained by in vitro methods
with the epitopes estimated by in silico analysis, and they found
that the methods using SARS-CoV immunological data, in general,
coincided with the experimental results.

Within the scope of the study, B-cell epitope prediction was
made for SARS-CoV-2 from SARS-CoV immunological data due to
genetic similarity. For this reason, the prediction studies based
on SARS-CoV immunological data have been examined within
the scope of the literature. In this context, there are a limited
number of studies in the literature. In some of the SARS-CoV-
based studies, the sequence alignment results of SARS-CoV and
SARS-CoV-2 were evaluated with bioinformatics tools to iden-
tify candidate epitopes. Some researchers have made predictions
using the immunological data of SARS-CoV epitopes.

Nucleocapsid and spike proteins are the dominant structural
proteins in the SARS-CoV-2 genome, as in other beta coron-
aviruses. In studies on the vaccine, it has been shown that spike
protein is effective for developing a peptide vaccine and is a
good candidate for generating a B-cell-dependent immune re-
sponse [33]. In studies in which the nucleocapsid protein was
experimentally tested for SARS-CoV, it was observed that it was
the dominant protein expressed in the virion in the early stage of
infection [34]. Studies have shown that the nucleocapsid protein
is a strong T-cell-dependent immunogen [35]. Therefore, peptide-
based studies on the immune response have focused on these 2
proteins. Within the scope of the study in [33], 34 linear B-cell
epitopes, 29 MHC I, and 8 MHC II T-cell epitopes were shown as
candidates for the vaccine.

Authors in [17] utilized the bioinformatics tools provided in
the Immune Epitope Database (IEDB) and Virus Pathogen Re-
source (ViPR) to identify regions corresponding to SARS-CoV-2
sequences and to predict possible epitopes. IEDB is a database
containing epitope information compiled from scientific litera-
ture for infectious disease, allergy, and autoimmunity. It also
includes online bioinformatics tools to analyze epitope data and
predict potential epitopes [36]. ViPR, on the other hand, is a
database containing genome, gene, and protein sequence infor-
mation about human pathogenic viruses [37]. In the related study,
considering the conserved regions of SARS-CoV-2, B and T-cell
epitope estimation for SARS-CoV-2 was realized based on se-
quence features. BepiPred 2.0 tool [4] was used for linear B-cell
3

epitope prediction and Discotope 2.0 tool [38] for conformational
B-cell epitope prediction. 29 epitopes for the spike protein, 4 for
the nucleocapsid protein, and 3 for the membrane protein were
identified as candidates.

In another study based on sequence features, Chen et al. [39]
aimed to predict linear and conformational B and T-cell epitopes
in the spike and nucleocapsid proteins of SARS-CoV-2. They iden-
tified the conserved regions of the virus genome by aligning the
SARS-CoV-2 protein sequences obtained from the NCBI database
with the Clustal Omega bioinformatics tool. Linear B-cell epitope
prediction was performed with the BepiPred and ABCPred [40]
tools and the epitope sequences with the highest antigenicity
found were listed. Authors measured antigenicity values with
the Vaxijen 2.0 [41] server. Conformational epitope prediction
was performed with Discotope 2.0. Estimation of T-cell epitopes
within the nucleocapsid protein that binds to the HLA-1 or HLA-2
molecule was made with the free online tool provided by IEDB.
63 B-cell epitopes have been proposed for vaccine studies.

At [42], authors performed B and T-cell epitope identification
on spike protein. They used NetCTL 1.2 for T-cell epitopes, ElliPro
and RaptorX for conformational B-cell epitopes, and BepiPred and
ABCPred servers for linear B-cell epitopes. As a result of their
analysis, they found 5 T-cell epitopes, 4 linear B-cell epitopes, and
5 conformational B-cell epitopes.

In the study [43], 115 T-cell epitopes and 298 B-cell epitopes
were obtained from the NIAID and VIPR [37] databases, which
were experimentally validated for SARS-CoV. These epitopes were
aligned with the SARS-CoV-2 protein sequence and conserved
and unmutated regions were identified. Accordingly, 27 T-cell
epitopes and 42 linear B-cell epitopes for nucleocapsid and spike
proteins, have been shown as candidates for SARS-CoV-2.

Sarkar et al. [44] identified possible B and T-cell epitopes using
IEDB for spike, nucleocapsid, ORF3a, and membrane proteins.
Among these epitopes, those with high antigenicity,
non-allergenicity, and non-toxicity were identified as candidate
epitopes for SARS-CoV-2. The authors suggested 5 epitopes for
spike protein and 6 epitopes for nucleocapsid protein for vaccine
studies.

The authors [45] predicted B and T-cell epitopes in spike, nu-
cleocapsid, and membrane proteins of SARS-CoV-2 by an
immunoinformatic method. Since B-cell epitopes can bind to
antigen receptors on the B-cell surface, they eliminated intracel-
lular epitopes from the epitopes they found with the BepiPred
and BcePred servers. By measuring the antigenicity, allergenicity,
and toxicity values for the remaining epitopes, they identified
10 B-cell linear epitopes with antigenicity greater than 0.9 as
candidates.

In another immunoinformatics study [46], B-cell epitopes for
spike protein were predicted with BepiPred 2.0. Those with a
threshold value higher than 0.5 were also used for T-cell epitope
prediction. Among the peptides found, the allergic and toxic
ones were eliminated and 17 B-cell epitopes were presented as
candidates.

Rehman et al. [47] focused on predicting immune response
inducing epitopes in B and T-cells for multi-epitope vaccine de-
sign. Epitope prediction was performed with spike, Mpro, Nsp 12,
and Nsp 13 proteins of SARS-CoV-2. As a result of the study, 46
antigenic B-cell peptides were predicted for the spike protein.

In [48], authors proposed a method to classify T-cell responses
by analyzing TCR beta information from subjects infected and
uninfected with SARS-CoV-2. The proposed method aimed to
detect protective immunity acquired through natural infection or
vaccine-induced immunity. Principal Component Analysis (PCA)
and Hierarchical Clustering methods were applied to the se-
quence data separated into k-mers. Since the number of samples
in the used dataset is small, the dataset is divided with hold-
one-out. Accordingly, an accuracy value of 96% was obtained in
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he training data and 92.9% in the test data. The procedures were
epeated for k-mers with a length of 3–9 amino acids, and the
-mers length with the highest success was determined as 5. The
act that the number of samples in the training dataset is too
mall has caused a situation that is overfitting to the training
ata. This situation reduces the generalizability of the proposed
ethod.
Lee and Koohy [24] extracted T-cell peptides identified for

ARS-CoV and peptides with high immunogenicity from IEDB.
y aligning these peptides with those of SARS-CoV-2, they iden-
ified peptides with high sequence similarity as candidate pep-
ides. MHC peptide connectivity of candidate peptides was mea-
ured with netMHCPan [49] and immunogenicity with iPred [50],
igh-value peptides are listed for vaccine studies.
Authors in [51] performed B-cell linear epitope prediction for

ARS-CoV using an immunological epitope dataset [52] created
ith IEDB and UniProt. The authors made classification with
ayesian Neural Network, which is also used for uncertainty
odeling in deep learning, with the thought that measuring
ncertainty will also provide a measure for the reliability of the
odel. They achieved 85% accuracy in SARS-CoV data. Aleatoric
nd epistemic uncertainty methods were used to measure the
ncertainty in epitope estimation. The related study was applied
nly for SARS-CoV epitope prediction, no prediction was made for
ARS-CoV-2.
Noumi et al. [53] applied the Long Short Term Memory (LSTM)

etwork with attention mechanism for epitope prediction in the
EDB dataset [52]. The results found were compared with the
pitope sequences predicted by BepiPred 2.0 for the same protein
equences. The epitope peptide length is limited to 8–14 amino
cids. The highest accuracy value was obtained as 0.79 for the
ase where the peptide length is 12.
In another study [54] on the IEDB epitope dataset [52], authors

ade epitope prediction for SARS-CoV by using immunological
ata with various machine learning methods. The authors used
he dataset containing B-cell epitopes to develop the model and
ested it with the SARS-CoV dataset. The most successful result
as obtained with an accuracy of 87% with the ensemble learning
odel.
The coronavirus pandemic has proven that the World is not

repared for deadly viral outbreaks. Traditionally, it takes 15
r more years to develop a vaccine [55]. Thanks to in silico
nd computational methods, vaccine candidate epitopes can be
uccessfully reduced, accelerating biologists in emergencies and
pidemics. However, there is a gap in the literature on successful
ARS-CoV-2 epitope prediction. The motivation of this study is
o contribute to biologists in vaccine development by rapidly
dentifying a small number of vaccine candidate epitopes using
n silico and bioinformatics tools.

. Material and methods

In this study, we used the publicly available Kaggle dataset
f SARS-CoV epitopes and SARS-CoV-2 peptides for the predic-
ion of epitope regions. A novel ensemble fuzzy classification
odel was proposed for the successful prediction of epitope

egions. R programming language was used for the development
f fuzzy learning models and statistical analysis. Fuzzy rule-based
lassification systems (FRBCSs) belong to the soft computation
amily and are considered an effective approach to model com-
lex problems. FRBCSs are specialized fuzzy rule-based systems
nd are used for handling classification problems. FRBCSs provide
n interpretable model through the use of linguistic tags in their
ules.

The general framework of the proposed model is formulated
nd given in Fig. 4. To train fuzzy methods, the labeled SARS-CoV
4

Fig. 4. General framework of the ensemble fuzzy classification model.

dataset is used. To get statistical validity, the dataset was divided
into train and test sets 6 times using random sampling with
replacement. The fuzzy rule sets obtained during the training
phase were applied to the test sets and their performances were
measured. Five fuzzy methods (GBML, GCCL, CHI, SLAVE, W) were
applied to all training sets separately and the final decisions for
the relevant test set were made by the majority voting method
in the individual decisions of these 5 methods. In this way, it is
obtained one ensemble model for each train set. The prediction
was made using all models with unlabeled SARS-CoV-2 data, and
the class of each peptide was obtained by combining the decisions
of ensemble methods.

The datasets used in this study are described in Section 3.1, the
FRBCS methods are briefly explained in Section 3.2, the proposed
model is given in Section 3.3, and the evaluation metrics are
described in Section 3.4.

3.1. Dataset description

In this study, a dataset [52] containing B-cell epitopes obtained
from IEDB and UniProt was used to predict SARS-CoV-2 epitopes.
There are 3 datasets here: B-cell epitopes, SARS-CoV epitopes
and SARS-CoV-2 peptides. Of these, B-cell epitopes and SARS-CoV
epitopes are labeled data, and the SARS-CoV-2 dataset contains
peptides of various lengths that are identified from a protein
sequence and have no label information. In this study, due to
the high genome similarity, the SARS-CoV epitope dataset was
used to develop a fuzzy model. The model with the high test
set accuracy for SARS-CoV was also applied to the SARS-CoV-2
dataset, and epitope prediction was made.

The datasets contain 13 features. The SARS-CoV and B-cell

datasets also have target values, indicating whether an amino
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eptid and protein based features at datasets.
Feature Description

Chou–Fasman Peptide feat. Relative frequency analysis on the
basis of amino acids for tertiary structural
elements. Given here for B-Turn.

Emini Peptide feat, relative surface accessibility, a
measure of residue solvent exposure.

Kolaskar–Tongaonkar Peptide feat. Antigenicity, antigenic propensity of
residues.

Parker Peptide feat. A measure of hydrophobicity of
peptide.

Isoelectric-point Protein feat. pH value of the amino acid in an
electric field.

Aromaticity Protein feat. A factor for protein fragment solubility.

Hydrophobicity Protein feat. A measure of the degree of affinity
between water and the side chain of an amino acid.

Stability Protein feature.

acid peptide is capable of inducing antibodies. The proteins in
the datasets are immunoglobulin antibody proteins, as they are
the most common type of antibody found in the bloodstream.
The dataset includes protein and peptide sequences, protein IDs,
starting and ending positions of peptides in the protein sequence,
and protein/peptide-based features. B-cell epitope prediction is
based on the antigenicity, hydrophobicity, surface accessibility,
beta turns, and flexibility properties of epitopes. The features in
the dataset and their descriptions are given in Table 1.

There are a total of 520 samples in the SARS-CoV dataset. A
otal of 140 of them are in the positive class, and the remaining
80 samples are in the negative class. Positive class means that
he corresponding peptide is the epitope. The longest peptide is
93 amino acids long, and the shortest peptide is 5 amino acids
ong. The SARS-CoV-2 dataset includes 20312 samples, and the
eptides are 5–20 amino acids long.

.2. Fuzzy learning classification models

The genetic cooperative competitive learning (GCCL) [56] al-
orithm uses genetic cooperative competitive learning to handle
lassification problems. In this technique, a chromosome defines
ach linguistic IF–THEN rule using integers as the representation
f the previous part. The heuristic is applied to automatically
roduce the class in the consequence part of the fuzzy rules. As-
essment is calculated separately for each rule. Thus, performance
s not based on the whole rule set.

The fuzzy genetics-based machine learning (GBML) model [57]
s based on a hybridization of Ishibuchi’s genetic collaborative
ompetitive learning (GCCL) and Pittsburgh approaches. Selec-
ion, crossover, and mutation operators of the genetic algorithm
re applied according to the algorithm proposed by Pittsburgh.
ere, each rule set is treated as an individual. Then, GCCL steps
re applied to each of the created rule sets with a probability
pecified as a parameter in the algorithm. Good fuzzy rules are
ound efficiently with the GCCL approach.

Chi’s (CHI) method [58] is proposed to overcome classification
roblems and is an extension of Wang and Mendel method. This
lgorithm is similar to the technique of Wang and Mendel’s [59].
hi’s method generates fuzzy IF–THEN rules and then replaces
hem with class labels so that they are sequential parts. Regarding
he calculation of the degrees of each rule, they are identified
y the previous (antecedent) part of the rules. Redundant rules
an be eliminated according to their degree. Thus, fuzzy IF–THEN

ules based on the FRBs model are obtained. Calculation of the

5

Fig. 5. The proposed ensemble fuzzy classification model.

degree of each rule is determined by the antecedent part of the
rules.

Ishibuchi’s method with a weight factor (W) applies the sec-
ond type of FRBs, which has weights in consequent parts of the
rules [60]. The antecedent fragments are then determined from
the training data by a grid-type fuzzy partition. The resulting
class is defined as the dominant class in the fuzzy subspace
corresponding to the antecedent part of each fuzzy IF–THEN rule.
The class of a new instance is determined by the rule’s resulting
class, which is the maximum product of its compatibility and
precision. The degree of concordance is determined by summing
the degrees of the membership functions of the previous sections,
while the degree of precision is calculated from the ratio between
the next class.

The structural learning algorithm in a vague environment
(SLAVE) is based on an approach where only one fuzzy rule is
obtained each time the genetic algorithm is run. To remove unre-
lated variables in a rule, SLAVE has a two-part structure: the first
part demonstrates the relevance of the variables, and the second
part describes the values of the parameters. This method applies
binary codes as representative of the population and executes
basic genetic operators, i.e., crossing, selection, and mutation on
the population. Then, the best rule is identified as the rule with
the highest degree of integrity and consistency [61].

3.3. Proposed ensemble fuzzy classification approach

An ensemble fuzzy classifier technique is proposed to develop
models and make predictions on the SARS-CoV dataset. Five
different fuzzy methods were applied separately to the training
data created by random sample selection. The proposed ensemble
model combines the decisions classifiers GCCL, GBML, CHI, W, and
SLAVE by using a majority voting scheme. As shown in Fig. 5, with
the model developed with each of them, predictions were made
on the test dataset consisting of random samples. By combining
the decisions of the models, the class of each sample in the test
set was decided by the majority voting method.

By random sampling with replacement, the training and test
set creation process was repeated 6 times. The performance of
the developed system was measured by applying the proposed
ensemble fuzzy model to each training-test dataset and taking
the average.

Based on the high genome similarity of SARS-CoV and SARS-
CoV-2, a fuzzy model was created with SARS-CoV data, and epi-

tope prediction was made by giving unlabeled SARS-CoV-2 data
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able 2
he parameters of fuzzy models.
Parameter Description Value

popu.size Population size GCCL:30, GBML:10
num.class Number of classes For all methods:2
num.labels Number of linguistic terms W:11, CHI:5, GCCL:9, GBML:7, SLAVE:7
persen_cross Probability of crossover GCCL:0.8, GBML:0.9, SLAVE:0.8
persen_mutant Probability of mutation GCCL:0.4, GBML:0.2, SLAVE:0.4
max.gen Maximum number of generations GCCL:150, GBML:10, SLAVE:40
type.mf The type of the shape of the membership function W:Gaussian, CHI:Triangle
type.tnorm The type of the tnorm W:min, CHI:min
type.snorm The type of the snorm W:sum, CHI:max
type. implication. func Type of implication functions W:Dienes Recher, CHI:Zadeh
max.num.rule Maximum number of rules GBML:10
p.dcare A probability of ‘‘don’t care’’ attributes occurred GBML:0.5
p.gccl A probability of GCCL process occurred GBML:0.4
max.iter Maximum number of iterations SLAVE:30
k.lower A lower bound of the noise threshold SLAVE:0
k.upper A value between 0 and 1 representing the level of generalization SLAVE:0.8
to these models as test data. Since the fuzzy methods used are
heuristic, 6 training-test sets were created by random sampling
from all SARS-CoV data, and an ensemble model was obtained by
training each training set with five different fuzzy methods (mod-
elChi, ModelGBML, modelGCCL, modelSlave, modelW in Fig. 5).
SARS-CoV prediction successes were measured by majority voting
for each training-test set pair. Since SARS-CoV data were divided
into 6 training-test sets, epitope prediction was made by applying
six models consisting of SARS-CoV-trained models of five fuzzy
methods to SARS-CoV-2 data. Each yellow box in Fig. 6 contains
the training and model building processes shown in Fig. 5. The
decisions made by the models are combined with different de-
grees of precision. The final epitope decision-making strategies
were named 4V (at least 4 votes), 5V (at least 5 votes), and 6V (at
least 6 votes). The epitope prediction process for SARS-CoV-2 is
shown in Fig. 6.

The details of the parameter settings for each model are given
n Table 2. All specified parameters were determined experimen-
ally. In the proposed method, the labeled SARS-CoV dataset was
sed to develop a model with fuzzy methods. Since the problem
nder consideration is a classification problem, the degrees of the
ules are determined in all methods depending on how much
hey represent the data during training. That is, the degree of
embership is directly proportional to the fact that the rule rep-

esents the training data. Membership functions are defined with

he ‘type.mf’ parameter specified in Table 2. The main difference

6

between the methods is the way in which the learning and fuzzy
rules are created.

3.4. Evaluation metrics

The epitope prediction performances of the models on the
SARS-CoV dataset were compared according to accuracy rate,
error rate, sensitivity/recall rate (RR), specificity rate (SR), posi-
tive predictive value (PPV) and negative predictive value (NPV)
criteria. These metrics are calculated from the confusion matrix.
The confusion matrix or contingency table summarizes the per-
formance of a classification model. The accuracy rate is the ratio
of all correctly predicted epitopes to the total number of epitopes.
The error rate is the ratio of all incorrectly predicted epitopes to
the total number of epitopes. The sensitivity or recall rate (RR)
metric is a measure of how well a test identifies true positives.
RR is the ratio of the true epitopes over all the actual epitopes.
The SR is the ratio of the true non-epitopes over all the actual
non-epitopes. PPV is the ratio of all the true epitopes over all
the predicted epitopes. NPV is the ratio of the true non-epitopes
over all the predicted non-epitopes. These metrics are expressed
mathematically as follows:

Accuracy rate =
TP + TN

TP + TN + FP + FN
∗ 100 (1)

Error rate =
FP + FN

∗ 100 (2)

TP + TN + FP + FN
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ensitivity rate =
TP

TP + FN
∗ 100 (3)

pecificity rate =
TN

TP + FP
∗ 100 (4)

PPV =
TP

TP + FP
∗ 100 (5)

PV =
TN

TN + FN
∗ 100 (6)

In the equations, TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives, respectively.

Furthermore, the eventual B-cell epitope prediction results
obtained for SARS-CoV-2 were compared with the epitope se-
quences predicted by the BepiPred server for the same protein
sequences. BepiPred is a web server that predicts B-cell epi-
topes from antigen sequences (http://www.cbs.dtu.dk/services/
BepiPred/). BepiPred makes predictions with a model trained
using Random Forest on a dataset of 649 antigen–antibody crystal
structures.

The Vaxijen server was used to compare the SARS-CoV-2 epi-
topes predicted by the BepiPred server and presented in the lit-
erature with the epitopes found by the proposed method. (http://
www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html). This anti-
genicity measurement tool is used to analyze B and T-cell epi-
topes by evaluating the physical and chemical properties of amino
acids and their abundance in known B and T-cell epitopes. The
higher the epitope antigenic score, the more likely it is to be used
as an antigen, i.e., it has greater immunogenicity.

4. Experimental results

4.1. Dataset preprocessing

In the SARS-CoV and SARS CoV-2 datasets, different peptides
were identified for a single IgG protein with lengths of 1255
and 1281 amino acids, respectively. Therefore, parent protein
ID and protein-based features were the same for all data, so
these features were excluded from both datasets. Additionally,
the features that give the start and end positions of the peptide
and peptide sequence features were also removed, and a new
feature including the peptide length was added. As a result, the
datasets were arranged to contain a total of 5 features. There
is also a label feature for SARS-CoV. The correlation matrix of
independent variables of the SARS-CoV dataset, density plots, and
2D density charts are given in Fig. 7.

In Fig. 7, the lower triangle shows the 2D density of the
combination between the two variables. The Pearson correlation
is given on the upper triangle, and the variable distributions
are illustrated on the diagonal. Linear dependence between two
variables was measured with Pearson correlation. In the upper
triangle, both the correlation coefficient and the correlation sig-
nificance level are given (***P < 0.001, **P < 0.01, *P < 0.05).

hen the scatter plots are examined, it is seen that the variables
re normally distributed and the highest and most significant
orrelation is between Parker and Chou–Fasman features (R =

.67, P < 0.001).

.2. SARS-CoV prediction

SARS-CoV dataset is unbalanced in terms of label distribu-
ion. Of the 520 samples in the dataset, 140 are in the positive
7

able 3
lassification errors for SARS-CoV.
Method Test1 Test2 Test3 Test4 Test5 Test6 Avg. Sig

CHI 17.5 37.5 25 27.5 22.5 20 29.17 +

GBML 17.5 15 32.5 15 20 22.5 23.82 +

GCCL 22.5 55 30 12.5 30 32.5 30.42 +

SLAVE 27.5 17.5 7.5 25 22.5 22.5 20.42 +

W 52.5 52.5 52.5 27.5 45 47.5 46.25 +

Ensemble fuzzy 7.5 12.5 7.5 10 7.5 5 8.33

(epitope) class, while the remaining 380 are in the negative (non-
epitope) class. The training, and test sets are divided according to
the class information. Out of 140 samples in the positive class,
120 samples were randomly selected for training so that the
model could learn the data and the remaining 20 samples were
used for testing. Since there were few samples in the positive
class, it was observed that the model could not learn the positive
class when the number of samples included in the test set was
increased. Therefore, 20 samples were randomly selected from
the negative class so that there were equal numbers of samples
from both classes in the test set.

For the model to learn the classes correctly, it was decided
experimentally howmany samples from the negative class should
be present in the training set. There were 120 samples from the
positive class in the training set. If there are 360, 300, 240, 180,
and 120 samples from the negative class, the estimation error
according to the classes and the total estimation error of the
proposed ensemble fuzzy model are given in Fig. 8.

As shown in Fig. 8, when the number of samples for the
negative class was higher than that for the positive class, high
prediction accuracy was obtained for the negative class, but the
model could not recognize the positive class. In the training set, as
the number of samples started to be equally distributed according
to the classes, the model’s ability to correctly predict the positive
class increased, and the total error decreased. From this point of
view, the training set was created to have 120 samples from both
classes.

The training-test set creation process was repeated 6 times to
include random samples. Accordingly, 20 randomly selected out
of 140 samples in the positive class were allocated as testing,
and the rest were allocated as training. For the negative class, 20
randomly selected out of 380 samples were added to the test set,
and 120 randomly selected samples were added to the training
set.

In Table 3, the individual decisions of fuzzy methods and the
prediction errors obtained by the proposed method are given for
the test sets. When the individual decisions of fuzzy methods
are examined, they are insufficient on their own for defining
membership functions that can model the whole data. It is clear
that combining the decisions of fuzzy methods has resulted in
a significant improvement in prediction performance. This is be-
cause each method learns different properties in the data. The
proposed ensemble fuzzy model classifies SARS-CoV data with an
average accuracy of 91.7%. The Wilcoxon rank-sum test was ap-
plied to SARS-CoV results to measure the statistical significance of
the difference between the individual methods and the proposed
method results. The test results are given in the last column of
Table 3 for α = 0.05. ‘+’ indicates that the results of the proposed
ethod are statistically better than those of the corresponding
lgorithm.

.3. SARS-CoV-2 prediction

Considering the high genome similarity of SARS-CoV with
ARS-CoV-2, epitope prediction was made for SARS-CoV-2 with

http://www.cbs.dtu.dk/services/BepiPred/
http://www.cbs.dtu.dk/services/BepiPred/
http://www.cbs.dtu.dk/services/BepiPred/
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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Fig. 7. Correlation, density and 2D density plot of independent variables.
Fig. 8. Train size tuning for negative class samples.

uzzy models trained for SARS-CoV, as shown in Fig. 6. While
stimating with SARS-CoV data, the model was trained 6 times
ince there were 6 training-test sets created with randomly se-
ected samples. Each of these models was also applied to the
ARS-CoV-2 data to make predictions.
The ensemble fuzzy classification method makes predictions

y combining the decisions of 5 fuzzy classifiers. This process
as repeated 6 times to ensure statistical validity. Therefore,
models were formed. With each model, the prediction was
ade on all SARS-CoV-2 data. Unlike the method applied for
ARS-CoV, the decision of the models is combined with different
egrees of sensitivity; common decision of at least 4 models (4V),
ommon decision of at least 5 models (5V) and common decision
f all models (6V). Accordingly, for a peptide in the dataset to be
abeled as an epitope by the 4V method, at least 4 out of 6 models
ust have made an ‘‘epitope’’ decision for that peptide. Table 4
ives the number of peptides labeled as epitopes for each method
nd their lengths. Additionally, the ‘‘dataset’’ column shows how
any peptides the data include for each length.
The SARS-CoV-2 dataset contains all possible k-mers of the

pike protein that are 5–20 amino acids long. The proposed en-
emble fuzzy classification model labeled 5465 peptides with the
V method, 3911 peptides with the 5V method, and 2004 pep-
ides with the 6V method as the epitope. The predicted epitopes
or all three methods are listed in Appendix Table A.1.

The algorithm was executed on an Intel(R) Core (TM) i7-6700
Q CPU at 2.60 GHz, on a 64-bit architecture with 16 GB RAM,
unning Windows 10 and the R programming language using the
rbs package. The execution time results are given in Table 5.
8

Table 4
Prediction results for SARS-CoV-2.
Epitope Number of predicted epitopes

Length Dataset 4V 5V 6V

5 1277 776 642 325
6 1276 201 136 70
7 1275 229 157 67
8 1274 265 185 81
9 1273 287 194 88
10 1272 294 196 82
11 1271 313 206 106
12 1270 330 219 98
13 1269 321 226 123
14 1268 321 232 121
15 1267 329 221 121
16 1266 335 229 138
17 1265 345 244 145
18 1264 369 273 144
19 1263 369 269 139
20 1262 381 282 156

Total 20 312 5465 3911 2004

Table 5
CPU time for SARS-CoV-2 prediction.
TrainSet GCCL W CHI GBML SLAVE Prediction Total

(min) (s) (s) (min) (min) (min) (min)

Train1 1.73 0.07 0.03 4.25 4.57 9.55 20.1
Train2 1.78 0.06 0.03 4.33 4.61 9.08 19.8
Train3 1.44 0.06 0.04 4.31 4.34 8.92 19.33
Train4 1.80 0.06 0.03 4.28 4.54 9.07 19.69
Train5 1.86 0.06 0.03 4.35 4.46 9.01 19.68
Train6 1.84 0.06 0.03 4.27 4.49 9.07 19.67

CPU time of whole framework 118.27

As mentioned earlier, the SARS-CoV dataset was divided into 6
training sets by random sampling. The training model in each
row represents execution time for related training set for all
methods. A separate model was created for all fuzzy methods in
each training set. All models obtained with a training set were
estimated by giving SARS-CoV-2 data as a test set. For this reason,
model creation and prediction times are given separately for each
training set. The ‘prediction’ column is the time required to make
predictions in the SARS-CoV-2 data for models trained with the
relevant training set. The last column is the time required to train
model with relevant training set and to make prediction. The time
required to train all models and make predictions for all training
sets is given in the last line. The final decision for the SARS-CoV-
2 data was obtained by estimating all models from all training
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able 6
omparison with BepiPred results.
BepiPred 4V 5V 6V

Epitope Len Ant Det Len Ant Det Len Ant Det Len Ant

VNLTTRTQLPPAYTNSFTR 19 0.6285 ! 19 0.6285 ! 19 0.6285 ✗ – –
ASTEKS 6 0.6206 ! 7 0.8587 ! 7 0.8587 ! 7 0.8587
PFLGVYYHKNNKSWMESE 18 0.5664 ! 18 0.5664 ! 18 0.5664 � 18 0.5664
KHTPINLVRDLPQGFSA 17 0.6207 � 19 0.5535 ✗ – – ✗ – –
TPGDSSSGWTA 11 0.2473 ! 12 0.0746 ! 17 0.4892 ! 17 0.4892
IYQTSNFRVQP 11 1.0147 ! 12 0.9986 ! 12 0.9986 ! 16 0.8559
DEVRQIAPGQTGKIAD 16 1.0388 ! 16 1.0388 ! 16 1.0388 ! 19 1.1515
NNLDSKVGGNYN 12 0.7538 ! 15 0.7275 ! 15 0.7275 ! 15 0.7275
GFNCYFPLQSYGF 13 0.8519 ! 18 0.8567 ! 18 0.8567 ! 18 0.8567
SNKKFLPF 8 1.3952 ! 8 1.3952 ! 8 1.3952 ! 9 1.1432
NCTEV 5 NA ! 5 NA ! 5 NA ✗ – –
HADQLTPT 8 0.4177 ! 8 0.4177 ! 8 0.4177 ! 16 0.6093
RVYSTGSNVFQ 11 −0.1000 ! 13 0.3359 ! 13 0.3359 ! 14 0.1826
AYTMSLGAENSVAYSNN 17 0.5966 ! 17 0.5966 ! 17 0.5966 ! 17 0.5966
KQIYKTPPIKDFGGF 15 −0.3896 ! 15 −0.3896 ! 15 −0.3896 ! 15 −0.3896
LPDPSKPSKR 10 0.2641 ! 10 0.2641 ! 10 0.2641 ! 10 0.2641
DPPEAEVQI 9 0.5966 ! 10 0.4955 ! 10 0.4955 ! 11 −0.0004
GQSKRVDFC 9 1.7790 ! 11 1.4088 ! 12 1.3607 ! 12 1.3607
FYEPQIITTD 10 0.4179 ! 10 0.4179 ! 16 0.6504 ! 19 0.2751
VNNTVYDPLQPELDSF 16 0.2201 ! 16 0.2201 ! 16 0.2201 ! 19 0.1493
LGKYEQYIKGSGR 13 0.3101 ! 13 0.3101 ! 13 0.3101 ! 13 0.3101
Average 0.5925 0.5900 0.6253 0.5553
sets. Since GCCL, GBML and SLAVE are genetic algorithm-based
iterative methods, their run times are greater than those of CHI
and W.

Since SARS-CoV-2 is unlabeled, the selected epitopes were
ompared with the epitopes that the BepiPred server found for
he same protein. In addition, these results have been compared
ith epitopes found in studies with various bioinformatics tools
r in vitro methods in the literature. The BepiPred server iden-
ified 44 peptides for the spike protein, 1–36 amino acids long.
or the same protein sequence, in [33] 34, in [17] 29, in [39] 63,
n [42] 4, in [43] 21, in [44] 5, in [46] 17, in [47] 46, and in [45]
0 linear B-cell epitopes were identified as vaccine candidates.
The peptides in the SARS-CoV-2 dataset are 5–20 amino acids

ong. Epitopes shorter than 5 amino acids or longer than 20 amino
cids among the epitopes compared in BepiPred and the literature
ere not included in the comparison. In addition, some peptides

dentified in these studies were not included in the comparison
ecause they were not included in the SARS-CoV-2 dataset used.
After elimination, comparisons were made for different sensi-

ivities (4V, 5V, 6V) of the proposed method. Comparative results
or BepiPred are given in Table 6, and comparative results for
he literature are given in Table 7. The first column in the tables
ncludes peptides BepiPred or found in studies in the literature.
ther columns are the sequence lengths of those peptides (Len)
nd antigenicity scores (Ant) measured by Vaxigen 2.0. Com-
arison results, peptide lengths and antigenicity scores of the
roposed method for different sensitivity levels are given in the
ext columns. The Detection column (Det) indicates whether a
eptide is found by the proposed method. A peptide identified
y related studies is also marked ‘‘!’’ if it is a subsequence of a
eptide found by the ensemble fuzzy method. Those with high
ntigenicity scores are written in bold. The mean antigenicity
alues of the peptides found by the methods are given in the
‘Average’’ line. If the antigenicity score of a peptide could not be
easured with the Vaxigen tool, it is indicated as ‘‘NA’’.
As seen from Table 6, 21 of the sequences identified by

epiPred were found by the 4V method, 20 by the 5V method,
nd 18 by the 6V method. When peptides with different sequence
engths were compared according to their antigenicity scores,
peptides found by the ensemble fuzzy method had higher
ntigenicity scores, while BepiPred was more successful for 5

9

peptides. Looking at the average scores, the 5V method gives the
best result.

In Table 7, epitopes in other studies in the literature are
compared with the proposed method. Grifoni et al. [17] identified
19 peptides as candidates for the vaccine. Of these, 12 were also
estimated by the 4V and 5V methods, and 10 by the 6V methods.
Considering all 3 methods, the 8 predicted peptides appeared to
be more antigenic. According to the mean antigenicity score, the
average of all peptides found by the 6V method was the highest.

All 33 peptides identified by [39] were also predicted by the 4V
method, and the 5V and 6V methods selected 30 and 22 of them,
respectively. Of the peptides predicted by the proposed method,
13 have higher antigenicity scores. The peptides with the mean
highest antigenicity scores are the peptides predicted by the 5V
method.

In [44], the authors identified 4 peptides in their study, all of
them which were selected by the ensemble fuzzy method, and
the developed method determined more antigen epitopes for 2
of them.

Of the 16 epitopes identified in [43], 9, 6, and 5 epitopes were
labeled by the 4V, 5V, and 6V methods, respectively. Except for
2, the developed method selected more antigenic epitopes. In
terms of the mean antigenicity score, the 5V method was the
most successful.

Eighteen B-cell vaccine candidates were identified by [33], of
which 16 were nominated by the 4V and 5V methods, and 11
were nominated for the vaccine by the 6V method. Considering
the antigenicity of peptides of different lengths, more antigen
epitopes are estimated for the 4 vaccine candidates identified by
the developed method.

Of the 42 B-cell epitopes identified by Rehman et al. [47], 34
were detected by the 4V method, 24 by the 5V method and 13
by the 6V method. The antigenicity scores of 15 of the epitopes
found in different lengths by the ensemble fuzzy method were
higher.

Lin et al. [45] identified 4 epitopes in their study, 3 of which
were found by the fuzzy method at all sensitivity levels. How-
ever, the epitopes found by [45] seemed to have higher average
antigenicity scores.

All 7 peptides presented in the study [46] were predicted

by the 4V and 5V methods, but the 6V method detected 3 of
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able 7
omparison results with literature.
Predicted Epitopes in [17] 4V 5V 6V

Epitope Len Ant Det Len Ant Det Len Ant Det Len Ant

FHAIHVSGTNG 11 0.8882 ! 18 0.6317 ! 18 0.6317 ! 18 0.6317
TLDSKTQSLLIVNNATNV 18 0.7295 ✗ – – ✗ – – ✗ – –
PGDSSSGWTAGA 12 0.0820 ! 17 0.2386 ! 17 0.2386 ! 18 0.5144
NENGTITDA 9 0.5257 ! 9 0.5257 ! 10 0.6020 ! 11 0.7882
IYQTSNFRV 9 0.3109 ! 11 0.2839 ! 11 0.2839 ! 16 0.8559
IAWNSNNLDSK 11 1.2444 ! 11 1.2444 ! 12 0.9178 ! 13 0.7773
STEIYQAGSTPCNGV 15 −0.0513 ! 16 0.0539 ! 18 −0.0751 ! 19 −0.0745
RVYSTGSNVFQTRA 14 0.3248 ! 14 0.3248 ! 14 0.3248 ! 18 0.5620
GAEHVNNSYE 10 0.8739 ! 10 0.8739 ! 10 0.8739 ! 10 0.8739
YICGDSTECSNLLLQ 15 −0.0093 ✗ – – ✗ – – ✗ – –
GSFCTQLNRALTG 13 0.4763 ✗ – – ✗ – – ✗ – –
AVEQDKNTQE 10 0.2792 ! 12 0.5008 ! 12 0.5008 ✗ – –
DEMIAQYTSALLAG 14 0.1366 ✗ – – ✗ – – ✗ – –
LQSLQTYVT 9 −0.0592 ✗ – – ✗ – – ✗ – –
RASANLAATKMSECVLGQ 18 0.4001 ✗ – – ✗ – – ✗ – –
TDNTFVSGNCD 11 0.0820 ! 14 0.1793 ! 14 0.1793 ! 14 0.1793
KNHTSPDV 8 0.9006 ! 8 0.9006 ! 8 0.9006 ! 8 0.9006
GINASVVNIQ 10 1.0425 ✗ – – ✗ – – ✗ – –
EVAKNLNESL 10 −0.0432 ! 10 −0.0432 ! 14 0.1512 ✗ – –

Average 0.4514 0.4762 0.4608 0.6009

Predicted Epitopes in [39] 4V 5V 6V

EVRQIAPGQTGKIADY 16 1.3837 ! 16 1.3837 ! 17 1.0936 ! 19 1.1515
TVEKGIYQTSNFRVQP 16 0.6733 ! 16 0.6733 ! 16 0.6733 ✗ – –
HRSYLTPGDSSSGWTA 16 0.6017 ! 16 0.6017 ! 17 0.4892 ! 17 0.4892
YVGYLQPRTFLLKYNE 16 0.5108 ! 18 0.4816 ! 18 0.4816 ! 18 0.4816
CGPKKSTNLVKNKCVN 16 0.2006 ! 20 0.8935 ! 20 0.8935 ✗ – –
TKTSVDCTMYICGDST 16 0.0937 ! 18 0.1426 ! 18 0.1426 ✗ – –
TEIYQAGSTPCNGVEG 16 −0.0105 ! 16 −0.0105 ! 16 −0.0105 ! 18 0.0583
FERDISTEIYQAGSTP 16 −0.2904 ! 17 −0.1383 ! 17 −0.1383 ! 19 −0.0782
FAMQMAYRFNGIGVTQ 16 1.3096 ! 18 1.4137 ✗ – – ✗ – –
IGKIQDSLSSTASALG 16 0.654 ! 19 0.5712 ! 19 0.5712 ! 20 0.4992
LQSYGFQPTNGVGYQP 16 0.5258 ! 17 0.4203 ! 17 0.4203 ✗ – –
SWMESEFRVYSSANNC 16 0.1724 ! 16 0.1724 ! 16 0.1724 ! 16 0.1724
TRFQTLLALHRSYLTP 16 0.5115 ! 18 0.5595 ✗ – – ✗ – –
PQIITTDNTFVSGNCD 16 0.2404 ! 16 0.2404 ! 16 0.2404 ! 16 0.2404
QKEIDRLNEVAKNLNE 16 0.0684 ! 18 0.1255 ! 18 0.1255 ✗ – –
KQIYKTPPIKDFGGFN 16 −0.2241 ! 16 −0.2241 ! 16 −0.2241 ! 16 −0.2241
SKRVDFCGK 9 1.7321 ! 9 1.7321 ! 12 1.3607 ! 12 1.3607
GKYEQY 6 1.2821 ! 6 1.2821 ! 6 1.2821 ! 6 1.2821
LDSKVGGNYNYLY 13 0.8331 ! 14 0.8329 ! 14 0.8329 ! 14 0.8329
TPGDSSSGWTAGA 13 0.1212 ! 18 0.5144 ! 18 0.5144 ! 18 0.5144
FLPFQ 5 NA ! 8 1.4427 ! 8 1.4427 ! 9 1.1432
TSNFRVQPTE 10 1.3571 ! 11 1.2323 ! 11 1.2323 ! 11 1.2323
TNLCPF 6 1.2508 ! 8 0.8906 ! 13 1.04 ✗ – –
DPSKPSKRSF 10 0.8148 ! 10 0.8148 ! 10 0.8148 ! 11 0.6286
EVFNATRFASVYAWNRKRI 19 0.2655 ! 19 0.2655 ✗ – – ✗ – –
AEVQIDR 7 −0.4355 ! 8 −0.2814 ! 11 −0.0004 ! 11 −0.0004
PTNGVG 6 −1.1441 ! 7 −0.7278 ! 8 −0.3112 ! 8 −0.3112
QLTPTWRVYSTGSNVFQTRA 20 0.7725 ! 20 0.7725 ! 20 0.7725 ✗ – –
TMSLGAENSVAYSNNS 16 0.6687 ! 16 0.6687 ! 16 0.6687 ! 16 0.6687
GFNCYFPLQSY 11 0.9224 ! 18 0.8567 ! 18 0.8567 ! 18 0.8567
EPQIITTDNT 10 0.7545 ! 13 0.6684 ! 16 0.5227 ! 17 0.3342
NSYECDIPIG 10 0.6533 ! 11 0.8366 ! 11 0.8366 ! 14 0.9296
IYKTPPIKDFGGFNF 15 0.0696 ! 15 0.0696 ! 15 0.0696 ! 15 0.0696
Average 0.5106 0.5763 0.6114 0.5362

Predicted Epitopes in [44] 4V 5V 6V

LTPGDSSSGWTAG 13 0.4950 ! 18 0.3768 ! 18 0.3768 ! 18 0.3768
VRQIAPGQTGKIAD 14 1.2606 ! 15 1.3487 ! 16 1.0388 ! 19 1.1515
YQAGSTPCNGV 11 0.0881 ! 13 0.1909 ! 15 0.2479 ! 15 0.2479
ILPDPSKPSKRS 12 0.5322 ! 12 0.5322 ! 12 0.5322 ! 12 0.5322
Average 0.594 0.6121 0.5489 0.5771

Predicted Epitopes in [43] 4V 5V 6V

DVVNQNAQALNTLVKQL 17 0.0320 ✗ – – ✗ – – ✗ – –
EAEVQIDRLITGRLQSL 17 −0.1784 ! 20 −0.0881 ✗ – – ✗ – –
GAGICASY 8 0.5210 ! 13 0.6871 ! 13 0.6871 ! 17 0.4587
GSFCTQLN 8 0.8144 ! 9 0.9306 ! 9 0.9306 ✗ – –

(continued on next page)
10
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able 7 (continued).
KGIYQTSN 8 0.2441 ! 8 0.2441 ! 9 0.4627 ! 10 0.3992
AMQMAYRF 8 0.9776 ! 9 1.0278 ! 11 1.2909 ! 11 1.2909
KNHTSPDVDLGDISGIN 17 1.1116 ! 18 1.0631 ! 19 0.8800 ! 19 0.8800
AATKMSECVLGQSKRVD 17 0.6159 ✗ – – ✗ – – ✗ – –

PFAMQMAYRFNGIGVTQ 17 1.3306 ! 18 1.4137 ✗ – – ✗ – –
QALNTLVKQLSSNFGAI 17 0.0872 ✗ – – ✗ – – ✗ – –
QLIRAAEIRASANLAAT 17 0.3714 ! 19 0.3381 ✗ – – ✗ – –
QQFGRD 6 −0.5500 ! 6 −0.5500 ! 6 −0.5500 ! 6 −0.5500
RASANLAATKMSECVLG 17 0.4414 ✗ – – ✗ – – ✗ – –
RLITGRLQSLQTYVTQQ 17 −0.2774 ✗ – – ✗ – – ✗ – –
SLQTYVTQQLIRAAEIR 17 −0.0120 ✗ – – ✗ – – ✗ – –

Average 0.5158 0.5629 0.6169 0.4958

Predicted Epitopes in [33] 4V 5V 6V

DPFLGVYYHKNNKSWME 17 0.5821 ! 17 0.5821 ! 17 0.5821 ! 17 0.5821
MDLEGKQGNFKNL 13 1.2592 ! 13 1.2592 ! 13 1.2592 ✗ – –
KHTPINLVRDLPQGFS 16 0.6403 ! 17 0.5695 ! 17 0.5695 ✗ – –
TPGDSSSGWTA 11 0.2473 ! 12 0.0746 ! 17 0.4892 ! 17 0.4892
KSFTVEKGIYQTSNFRVQP 19 0.5729 ! 19 0.5729 ! 19 0.5729 ✗ – –
SNKKFLPF 8 1.3952 ! 8 1.3952 ! 8 1.3952 ! 9 1.1432
TNTSN 5 NA ! 5 ! 5 ! 5
NCTEVPVAIHADQLTPT 17 0.3987 ✗ – – ✗ – – ✗ – –
RVYSTGSNVFQ 11 −0.1000 ! 13 0.3359 ! 13 0.3359 ✗ – –
VNNSYECDIPI 11 0.6124 ! 16 0.9123 ! 16 0.9123 ✗ – –
YTMSLGAENSVAYSNN 16 0.6434 ! 16 0.6434 ! 16 0.6434 ! 16 0.6434
EQDKNTQ 7 0.1017 ! 7 0.1017 ! 7 0.1017 ! 7 0.1017
KQIYKTPPIKDFGGF 15 −0.3896 ! 15 −0.3896 ! 15 −0.3896 ! 15 −0.3896
PDPSKPSK 8 0.0621 ! 8 0.0621 ! 8 0.0621 ! 8 0.0621
LADAGFIKQYGDCLG 15 0.2071 ✗ – – ✗ – – ✗ – –
EAEVQ 5 NA ! 5 NA ! 5 NA ! 11 −0.0004
GQSKRVDFC 9 1.7790 ! 11 1.4088 ! 12 1.3607 ! 12 1.3607
RNFYEPQIITTD 12 0.3529 ! 15 0.6381 ! 16 0.6504 ! 20 0.2624

Average 0.5228 0.5833 0.6103 0.4255

Predicted Epitopes in [47] 4V 5V 6V

RGVYYPDK 8 1.0191 ! 8 1.0191 ! 8 1.0191 ! 11 0.5200
RSSVLHST 8 0.5459 ! 10 0.5404 ! 10 0.5404 ✗ – –
DLFLPFFS 8 −0.3099 ✗ – – ✗ – – ✗ – –
FHAIHV 6 1.6766 ! 18 0.6317 ! 18 0.6317 ! 18 0.6317
NPVLPFN 7 0.5863 ! 9 0.0146 ! 9 0.0146 ! 9 0.0146
QSLLIVN 7 0.8168 ! 15 0.5156 ! 15 0.5156 ✗ – –
NVVIKVCEFQ 10 −0.1498 ✗ – – ✗ – – ✗ – –
CNDPFLGVYYH 11 0.4109 ! 17 0.5314 ! 17 0.5314 ! 17 0.5314
FEYVSQP 7 0.9073 ! 11 0.1016 ! 11 0.1016 ✗ – –
INLVRDL 7 −0.3198 ! 14 0.4022 ! 14 0.4022 ! 17 0.4924
LEPLVDLP 8 −0.3271 ✗ – – ✗ – – ✗ – –
QTLLALHRSY 10 0.5596 ! 17 0.5921 ✗ – – ✗ – –
AAYYVGYL 8 0.5218 ! 12 0.9255 ✗ – – ✗ – –
PRTFLLK 7 −1.3917 ! 10 −0.2800 ! 10 −0.2800 ! 12 −0.2227
AVDCALDP 8 0.7730 ! 16 0.5804 ! 16 0.5804 ! 16 0.5804
TNLCPFG 7 1.1812 ! 8 0.8906 ! 13 1.0400 ✗ – –
SNCVADYSVLYNS 13 −0.1828 ! 13 0.0152 ✗ – – ✗ – –
TFKCYGVSPT 10 1.5059 ! 20 0.8913 ! 20 0.8913 ✗ – –
TGCVIA 6 0.4716 ! 10 0.0996 ! 13 −0.1592 ! 14 −0.1234
CYFPLQSY 8 0.9394 ! 8 0.9394 ! 12 0.8719 ! 12 0.8719
FGGVSVIT 8 0.7715 ! 12 0.4578 ! 13 0.4931 ! 13 0.4931
CTEVPVAIHAD 11 0.0499 ✗ – – ✗ – – ✗ – –
AGCLIGA 7 0.1743 ✗ – – ✗ – – ✗ – –
GAGICASY 8 0.5210 ! 13 0.6871 ! 13 0.6871 ! 17 0.4587
VASQSII 7 −0.0188 ! 16 0.3257 ! 16 0.3257 ! 18 0.4018
TTEILPVS 8 1.2071 ✗ – – ✗ – – ✗ – –
SVDCTMY 7 1.0932 ! 17 −0.0258 ! 18 0.1426 ✗ – –
SNLLLQYGSFCTQL 14 0.7599 ✗ – – ✗ – – ✗ – –
VFAQVKQI 8 0.5854 ! 14 0.3493 ! 15 0.4451 ✗ – –
SQILPD 6 −0.1542 ! 8 0.0383 ! 8 0.0383 ! 11 0.5569
YGDCLGD 7 −0.5555 ! 12 0.5494 ! 14 0.0416 ✗ – –
RDLICAQ 7 1.1443 ✗ – – ✗ – – ✗ – –
LTVLPPL 7 0.6786 ✗ – – ✗ – – ✗ – –
YTSALLAG 8 0.3798 ! 20 0.3640 ✗ – – ✗ – –
LNTLVKQL 8 −0.7591 ! 16 −0.0646 ! 16 −0.0646 ✗ – –
ISSVLND 7 0.0414 ! 11 0.7339 ! 12 0.6035 ✗ – –
SLQTYVTQQ 9 −0.0089 ✗ – – ✗ – – ✗ – –
SECVLGQS 8 −0.0110 ! 13 0.5417 ✗ – – ✗ – –
PHGVVFLHVTYVPA 14 0.8058 ✗ – – ✗ – – ✗ – –

(continued on next page)
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able 7 (continued).
PAICHDG 7 −1.0100 ! 15 0.2145 ! 15 0.2145 ✗ – –
SGNCDVVIGI 10 0.7421 ✗ – – ✗ – – ✗ – –
ASVVNI 6 0.8671 ! 13 0.1922 ✗ – – ✗ – –

Average 0.3938 0.4258 0.4011 0.4005

Predicted Epitopes in [45] 4V 5V 6V

VRQIAPGQTGKIAD 14 1.2606 ! 15 1.3487 ! 16 1.0388 ! 19 1.1515
VLGQSKRVDFCGKG 14 1.3582 ✗ – – ✗ – – ✗ – –
GLTGTGVLTESNKK 14 1.0227 ! 14 1.0227 ! 14 1.0227 ! 16 0.6686
KIADYNYKLPDDFT 14 0.9567 ! 14 0.9567 ! 14 0.9567 ! 14 0.9567
Average 1.1495 1.1094 1.006 0.9256

Predicted Epitopes in [46] 4V 5V 6V

DPFLGVYYHKNNKSWME 17 0.5821 ! 17 0.5821 ! 17 0.5821 ! 17 0.5821
MDLEGKQGNFKNL 13 1.2592 ! 13 1.2592 ! 13 1.2592 ✗ – –
KHTPINLVRDLPQGFS 16 0.6403 ! 17 0.5695 ! 17 0.5695 ✗ – –
TPGDSSSGWTA 11 0.2473 ! 12 0.0746 ! 17 0.4892 ! 17 0.4892
KSFTVEKGIYQTSNFRVQP 19 0.5729 ! 19 0.5729 ! 19 0.5729 ✗ – –
VNNSYECDIPI 11 0.6124 ! 16 0.9123 ! 16 0.9123 ✗ – –
YTMSLGAENSVAYSNN 16 0.6434 ! 16 0.6434 ! 16 0.6434 ! 16 0.6434
Average 0.6111 0.6591 0.7184 0.5716
them. Considering the antigenicity scores of epitopes of different
lengths, the 5V method detected more antigen epitopes.

When the results of the methods presented in the literature
re compared with the developed method, it is seen that most of
he epitopes suggested as vaccine candidates for SARS-CoV-2 with
any different methods can also be detected by the ensemble

uzzy method. This shows that the proposed ensemble fuzzy
ethod is robust. Among the 4V, 5V, and 6V methods obtained
y combining the decisions with different majority decisions, the
V method was generally more successful in terms of the average
ntigenicity score.

. Discussion

SARS-CoV-2 B-cell epitope identification with the aid of a
igh-performance prediction method contributes to rapid, reli-
ble, and effective protein-based vaccine development. The use
f experimental methods in vaccine development is quite time-
onsuming, costly, and labor-intensive. Therefore, the main aim
f this study was to propose a method that can predict B-cell
pitopes with high accuracy. The results obtained from the study
how that we have achieved this goal. The SARS-CoV B-cell epi-
ope prediction of the five different fuzzy learning classifica-
ion methods in different test data minimal error rate was 7.5%
SLAVE), and the maximal error rate was 52.5% (W), while the
inimal error rate of the ensemble fuzzy method was 5% and the
aximal error rate was 12.5%. When the average errors of the

est results were compared, the proposed method had the lowest
rror rate of 8.33%, followed by the SLAVE method at 20.42%.
he mean error of the most successful fuzzy learning model in
ARS-CoV B-cell epitope prediction was approximately 2.5 times
igher than of the proposed model. From the obtained results,
t is clearly seen that the proposed method outperformed other
ethods. This shows that ensemble learning methods are more
uccessful than individual methods.
The main advantage of the proposed method is that the deci-

ions made by fuzzy methods are combined with an ensemble-
ased structure. The fuzzy methods used include different
earning and decision-making approaches, as explained in Sec-
ion 3.2. It has been seen in the majority voting and decision
ggregation phase that different fuzzy methods learn different
eatures in the dataset. Thus, the average spread of a model
hat contributes to the ensemble is reduced, and the average
rediction performance for each model is improved. In fact, as
learly shown in Table 3 the aggregation of decisions improved

he estimation performance of single fuzzy classifiers.

12
The prediction accuracies of the studies on B-cell epitope
prediction in the literature were compared with the prediction
accuracies obtained from this study. In [54], different machine
learning methods were compared and it was reported that the
most successful method was the ensemble method with an ac-
curacy value of 87.8%. In [51], Bayesian neural networks with
drop-weight models were proposed for epitope prediction. The
prediction accuracy of the proposed model was 85%. In [53],
the attentional mechanism LSTM network approach was used
for epitope prediction. With this model, epitopes were predicted
with 79% accuracy. In this study, the proposed ensemble clas-
sifier outperformed other studies in the literature, with a mini-
mum accuracy of 87.5% and maximum accuracy of 95.0% epitope
prediction.

In this study, we determined that the dataset was imbalanced;
therefore, we applied the subsampling preprocessing step. Thus,
we randomly generated 6 different sub-datasets with the positive
and negative class labels of the samples balanced. The SARS-CoV
B-cell epitope prediction accuracies of the proposed ensemble
fuzzy model are illustrated in Fig. 9.

The dataset used in the study consists of all possible subse-
quences of the SARS-CoV-2 spike protein of different lengths, and
there is no label information to definitively determine whether
a sequence is an epitope or not. Fuzzy logic approaches enable
us to take into account imprecise information while making a
decision. As indicated in the predictions, it can measure more
sensitively than classical logic-based classification methods. The
results obtained showed that it was more successful than other
machine learning methods evaluated in the literature.

In addition, the SARS-CoV-2 B-cell epitope prediction results
obtained in this study were validated with the results reported in
the literature and the epitope results predicted by the BepiPred
server. Furthermore, antigenicity scores of SARS-CoV-2 B-cell epi-
topes were measured. Thus, we hope that the information ob-
tained from this study will help develop an effective protein-
based vaccine against SARS-CoV-2.

6. Conclusion

In this study, an efficient fuzzy learning-based model is pro-
posed that predicts potential epitopes to assist the first stage of
mRNA-based vaccine development. The SARS-CoV B-cell epitope
prediction performances of five different fuzzy learning meth-
ods were examined and compared with the proposed method.
According to the results obtained, the proposed ensemble fuzzy
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Fig. 9. Confusion matrices of the proposed ensemble fuzzy model for different test sets.
ethod showed superior performance with maximal 95% accu-
acy and average 91.7% accuracy to other methods. After that,
ith the proposed method, B-cell epitope prediction was made

n unlabeled SARS-CoV-2 data, and the epitopes found were con-
irmed with those reported in the literature and the predictions of
he BepiPred server. Moreover, antigenicity scores were measured
or protein sequences of epitopes identified using the VaxiJen
erver.
The virus is still spreading rapidly and therefore mutating. It

as been determined that some mutations can escape vaccines
15,62]. The fact that the virus mutates and may require the
edevelopment of vaccines increases the importance of using in
ilico methods. However, if these mutations occur outside of the
dentified epitope regions, the results will not be affected. There-
ore, the identified epitopes can be used as potential antigens
rom which more detailed assays can be conducted in vitro to
valuate vaccine efficacy. It is anticipated that the information
btained from this study will contribute to the development of
accines against different epidemics that may occur in the future,
specially SARS-CoV-2 and its possible mutations.

ode availability statement

The source code has been available at https://github.com/
BaOz/Epitope-Identification.

RediT authorship contribution statement

Zeynep Banu Ozger: Conceptualization, Writing – original
raft, Methodology, Validation, Software, Visualization, Writing –
eview & editing. Pınar Cihan: Writing – original draft, Method-
logy, Validation, Software, Visualization, Writing – review &
diting.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.
13
Acknowledgments

This study was supported by The Scientific and Technological
Research Council of Turkey-TÜBİTAK (Project Number: 121E326).

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.asoc.2021.108280.

References

[1] C.A. Janeway Jr., P. Travers, M. Walport, M.J. Shlomchik, Principles of innate
and adaptive immunity, in: Immunobiology: The Immune System in Health
and Disease, fifth ed., Garland Science, 2001.

[2] J.S. Marshall, R. Warrington, W. Watson, H.L. Kim, An introduction to
immunology and immunopathology, Allergy Asthma Clin. Immunol. 14 (2)
(2018) 1–10.

[3] D.D. Chaplin, Overview of the immune response, J. Allergy Clin. Immunol.
125 (2) (2010) S3–S23.

[4] M.C. Jespersen, B. Peters, M. Nielsen, P. Marcatili, Bepipred-2.0: improving
sequence-based b-cell epitope prediction using conformational epitopes,
Nucleic Acids Res. 45 (W1) (2017) W24–W29.

[5] W.E. Paul, Fundamental immunology, in: Fundamental Immunology, 1985,
p. 809.

[6] J.V. Ponomarenko, M.H. Van Regenmortel, B cell epitope prediction, Struct.
Bioinform. 2 (2009) 849–879.

[7] J.L. Sanchez-Trincado, M. Gomez-Perosanz, P.A. Reche, Fundamentals and
methods for t-and b-cell epitope prediction, J. Immunol. Res. 2017 (2017).

[8] M. Levitt, Nature of the protein universe, Proc. Natl. Acad. Sci. 106 (27)
(2009) 11079–11084.

[9] F. Li, Structure, function, and evolution of coronavirus spike proteins, Annu.
Rev. Virol. 3 (2016) 237–261.

[10] E. De Wit, N. Van Doremalen, D. Falzarano, V.J. Munster, Sars and mers:
recent insights into emerging coronaviruses, Nat. Rev. Microbiol. 14 (8)
(2016) 523.

[11] C.S.G. of the International, et al., The species severe acute respira-
tory syndrome-related coronavirus: classifying 2019-ncov and naming it
sars-cov-2, Nat. Microbiol. 5 (4) (2020) 536.

[12] M. Galanopoulos, A. Doukatas, M. Gazouli, Origin and genomic charac-
teristics of sars-cov-2 and its interaction with angiotensin converting
enzyme type 2 receptors, focusing on the gastrointestinal tract, World J.
Gastroenterol. 26 (41) (2020) 6335.

[13] M.T. Ul Qamar, S. Saleem, U.A. Ashfaq, A. Bari, F. Anwar, S. Alqahtani,
Epitope-based peptide vaccine design and target site depiction against
middle east respiratory syndrome coronavirus: an immune-informatics
study, J. Transl. Med. 17 (1) (2019) 1–14.

https://github.com/ZBaOz/Epitope-Identification
https://github.com/ZBaOz/Epitope-Identification
https://github.com/ZBaOz/Epitope-Identification
https://doi.org/10.1016/j.asoc.2021.108280
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb1
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb1
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb1
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb1
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb1
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb2
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb2
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb2
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb2
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb2
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb3
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb3
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb3
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb4
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb4
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb4
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb4
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb4
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb5
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb5
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb5
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb6
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb6
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb6
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb7
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb7
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb7
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb8
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb8
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb8
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb9
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb9
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb9
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb10
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb10
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb10
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb10
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb10
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb11
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb11
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb11
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb11
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb11
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb12
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb12
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb12
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb12
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb12
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb12
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb12
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb13
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb13
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb13
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb13
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb13
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb13
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb13


Z.B. Ozger and P. Cihan Applied Soft Computing 116 (2022) 108280
[14] P. Ellis, F. Somogyvári, D.P. Virok, M. Noseda, G.R. McLean, Decoding
covid-19 with the sars-cov-2 genome, Curr. Genet. Med. Rep. (2021) 1–12.

[15] P. Cihan, Forecasting fully vaccinated people against COVID-19 and exam-
ining future vaccination rate for herd immunity in the US, Asia, europe,
africa, south america, and the world, Appl. Soft Comput. 111 (2021)
107708.

[16] C. Chakraborty, A. Sharma, G. Sharma, M. Bhattacharya, S. Lee, Sars-CoV-2
causing pneumonia-associated respiratory disorder (COVID-19): diagnostic
and proposed therapeutic options, Eur. Rev. Med. Pharmacol. Sci. 24 (7)
(2020) 4016–4026.

[17] A. Grifoni, J. Sidney, Y. Zhang, R.H. Scheuermann, B. Peters, A. Sette, A
sequence homology and bioinformatic approach can predict candidate
targets for immune responses to SARS-CoV-2, Cell Host Microbe 27 (4)
(2020) 671–680.

[18] S.C. Jordan, Innate and adaptive immune responses to SARS-CoV-2 in
humans: relevance to acquired immunity and vaccine responses, Clin. Exp.
Immunol. 204 (3) (2021) 310–320.

[19] C.O. Barnes, C.A. Jette, M.E. Abernathy, K.-M.A. Dam, S.R. Esswein, H.B.
Gristick, A.G. Malyutin, N.G. Sharaf, K.E. Huey-Tubman, Y.E. Lee, et al.,
Sars-CoV-2 neutralizing antibody structures inform therapeutic strategies,
Nature 588 (7839) (2020) 682–687.

[20] J.M. Dan, J. Mateus, Y. Kato, K.M. Hastie, E.D. Yu, C.E. Faliti, A. Grifoni, S.I.
Ramirez, S. Haupt, A. Frazier, et al., Immunological memory to SARS-CoV-2
assessed for up to 8 months after infection, Science 371 (6529) (2021).

[21] E. Ong, M.U. Wong, A. Huffman, Y. He, Covid-19 coronavirus vaccine design
using reverse vaccinology and machine learning, Front. Immunol. 11 (2020)
1581.

[22] Y. Zhou, S. Jiang, L. Du, Prospects for a mers-cov spike vaccine, Expert Rev.
Vaccines 17 (8) (2018) 677–686.

[23] L. Du, G. Zhao, Y. Lin, H. Sui, C. Chan, S. Ma, Y. He, S. Jiang, C. Wu, K.-Y.
Yuen, et al., Intranasal vaccination of recombinant adeno-associated virus
encoding receptor-binding domain of severe acute respiratory syndrome
coronavirus (sars-cov) spike protein induces strong mucosal immune
responses and provides long-term protection against sars-cov infection,
J. Immunol. 180 (2) (2008) 948–956.

[24] C.H. Lee, H. Koohy, In silico identification of vaccine targets for 2019-ncov,
F1000Research 9 (2020).

[25] Z. Ceylan, Estimation of covid-19 prevalence in italy, spain, and france, Sci.
Total Environ. 729 (2020) 138817.

[26] Z. Malki, E.-S. Atlam, A. Ewis, G. Dagnew, A.R. Alzighaibi, G. ELmarhomy,
M.A. Elhosseini, A.E. Hassanien, I. Gad, Arima models for predicting the
end of covid-19 pandemic and the risk of second rebound, Neural Comput.
Appl. 33 (7) (2021) 2929–2948.

[27] V.K.R. Chimmula, L. Zhang, Time series forecasting of covid-19 transmission
in canada using lstm networks, Chaos Solitons Fractals 135 (2020) 109864.

[28] P. Cihan, Fuzzy rule-based system for predicting daily case in covid-
19 outbreak, in: 2020 4th International Symposium on Multidisciplinary
Studies and Innovative Technologies (ISMSIT), IEEE, 2020, pp. 1–4.

[29] F. Demir, Deepcoronet: A deep lstm approach for automated detection of
covid-19 cases from chest x-ray images, Appl. Soft Comput. 103 (2021)
107160.

[30] A. Saygılı, A new approach for computer-aided detection of coronavirus
(covid-19) from ct and x-ray images using machine learning methods,
Appl. Soft Comput. 105 (2021) 107323.

[31] A. Castiglione, P. Vijayakumar, M. Nappi, S. Sadiq, M. Umer, Covid-19:
Automatic detection of the novel coronavirus disease from ct images using
an optimized convolutional neural network, IEEE Trans. Ind. Inf. (2021).

[32] M.S. Sohail, S.F. Ahmed, A.A. Quadeer, M.R. McKay, In silico t cell epitope
identification for sars-cov-2: Progress and perspectives, Adv. Drug Deliv.
Rev. (2021).

[33] M. Bhattacharya, A.R. Sharma, P. Patra, P. Ghosh, G. Sharma, B.C. Patra, S.-S.
Lee, C. Chakraborty, Development of epitope-based peptide vaccine against
novel coronavirus 2019 (sars-cov-2): Immunoinformatics approach, J. Med.
Virol. 92 (6) (2020) 618–631.

[34] M. Surjit, S.K. Lal, The sars-cov nucleocapsid protein: a protein with
multifarious activities, Infect. Genet. Evol. 8 (4) (2008) 397–405.

[35] U.J. Buchholz, A. Bukreyev, L. Yang, E.W. Lamirande, B.R. Murphy, K.
Subbarao, P.L. Collins, Contributions of the structural proteins of severe
acute respiratory syndrome coronavirus to protective immunity, Proc. Natl.
Acad. Sci. 101 (26) (2004) 9804–9809.

[36] R. Vita, S. Mahajan, J.A. Overton, S.K. Dhanda, S. Martini, J.R. Cantrell, D.K.
Wheeler, A. Sette, B. Peters, The immune epitope database (iedb): 2018
update, Nucleic Acids Res. 47 (D1) (2019) D339–D343.

[37] B.E. Pickett, E.L. Sadat, Y. Zhang, J.M. Noronha, R.B. Squires, V. Hunt, M. Liu,
S. Kumar, S. Zaremba, Z. Gu, et al., Vipr: an open bioinformatics database
and analysis resource for virology research, Nucleic Acids Res. 40 (D1)
(2012) D593–D598.
14
[38] J.V. Kringelum, C. Lundegaard, O. Lund, M. Nielsen, Reliable b cell epitope
predictions: impacts of method development and improved benchmarking,
PLoS Comput. Biol. 8 (12) (2012) e1002829.

[39] H.-Z. Chen, L.-L. Tang, X.-L. Yu, J. Zhou, Y.-F. Chang, X. Wu, Bioinformatics
analysis of epitope-based vaccine design against the novel sars-cov-2,
Infect. Dis. Poverty 9 (1) (2020) 1–10.

[40] S. Saha, G.P.S. Raghava, Prediction of continuous b-cell epitopes in an
antigen using recurrent neural network, Proteins: Struct. Funct. Bioinform.
65 (1) (2006) 40–48.

[41] I.A. Doytchinova, D.R. Flower, Vaxijen: a server for prediction of protective
antigens, tumour antigens and subunit vaccines, BMC Bioinformatics 8 (1)
(2007) 1–7.

[42] V. Baruah, S. Bose, Immunoinformatics-aided identification of t cell and b
cell epitopes in the surface glycoprotein of 2019-nCoV, J. Med. Virol. 92
(5) (2020) 495–500.

[43] S.F. Ahmed, A.A. Quadeer, M.R. McKay, Preliminary identification of po-
tential vaccine targets for the covid-19 coronavirus (sars-cov-2) based on
sars-cov immunological studies, Viruses 12 (3) (2020) 254.

[44] B. Sarkar, M.A. Ullah, F.T. Johora, M.A. Taniya, Y. Araf, The essential facts
of wuhan novel coronavirus outbreak in china and epitope-based vaccine
designing against 2019-ncov, BioRxiv (2020).

[45] L. Lin, S. Ting, H. Yufei, L. Wendong, F. Yubo, Z. Jing, Epitope-based peptide
vaccines predicted against novel coronavirus disease caused by sars-cov-2,
Virus Res. 288 (2020) 198082.

[46] S. Ismail, S. Ahmad, S.S. Azam, Immunoinformatics characterization of sars-
cov-2 spike glycoprotein for prioritization of epitope based multivalent
peptide vaccine, J. Molecular Liquids 314 (2020) 113612.

[47] H.M. Rehman, M.U. Mirza, M.A. Ahmad, M. Saleem, M. Froeyen, S. Ahmad,
R. Gul, H.A. Alghamdi, M.S. Aslam, M. Sajjad, et al., A putative prophy-
lactic solution for covid-19: Development of novel multiepitope vaccine
candidate against sars-cov-2 by comprehensive immunoinformatic and
molecular modelling approach, Biology 9 (9) (2020) 296.

[48] M.S. Shoukat, A.D. Foers, S. Woodmansey, S.C. Evans, A. Fowler, E.J. Soilleux,
Use of machine learning to identify a t cell response to sars-cov-2, Cell
Rep. Med. 2 (2) (2021) 100192.

[49] V. Jurtz, S. Paul, M. Andreatta, P. Marcatili, B. Peters, M. Nielsen,
Netmhcpan-4.0: improved peptide–mhc class i interaction predictions
integrating eluted ligand and peptide binding affinity data, J. Immunol.
199 (9) (2017) 3360–3368.

[50] M.V. Pogorelyy, A.D. Fedorova, J.E. McLaren, K. Ladell, D.V. Bagaev, A.V.
Eliseev, A.I. Mikelov, A.E. Koneva, I.V. Zvyagin, D.A. Price, et al., Exploring
the pre-immune landscape of antigen-specific t cells, Genome Med. 10 (1)
(2018) 1–14.

[51] B. Ghoshal, B. Ghoshal, S. Swift, A. Tucker, Uncertainty estimation in
sars-cov-2 b-cell epitope prediction for vaccine development, 2021, arXiv
preprint arXiv:2103.11214.

[52] F. Corporation, Covid-19/sars b-cell epitope prediction, 0000. URL https:
//www.kaggle.com/futurecorporation/epitope-prediction.

[53] T. Noumi, S. Inoue, H. Fujita, K. Sadamitsu, M. Sakaguchi, A. Tenma, H.
Nakagami, Epitope prediction of antigen protein using attention-based lstm
network, J. Inf. Process. 29 (2021) 321–327.

[54] N. Jain, S. Jhunthra, H. Garg, V. Gupta, S. Mohan, A. Ahmadian, S.
Salahshour, M. Ferrara, Prediction modelling of covid using machine
learning methods from b-cell dataset, Results Phys. 21 (2021) 103813.

[55] F. Krammer, Sars-cov-2 vaccines in development, Nature 586 (7830) (2020)
516–527.

[56] H. Ishibuchi, T. Nakashima, T. Murata, Performance evaluation of fuzzy
classifier systems for multidimensional pattern classification problems,
IEEE Trans. Syst. Man Cybern. B 29 (5) (1999) 601–618.

[57] H. Ishibuchi, T. Yamamoto, T. Nakashima, Hybridization of fuzzy gbml
approaches for pattern classification problems, IEEE Trans. Syst. Man
Cybern. B 35 (2) (2005) 359–365.

[58] Z. Chi, H. Yan, T. Pham, Fuzzy Algorithms: With Applications to Image
Processing and Pattern Recognition, Vol. 10, World Scientific, 1996.

[59] L.-X. Wang, J.M. Mendel, Generating fuzzy rules by learning from examples,
IEEE Trans. Syst. Man Cybern. 22 (6) (1992) 1414–1427.

[60] H. Ishibuchi, T. Nakashima, Effect of rule weights in fuzzy rule-based
classification systems, IEEE Trans. Fuzzy Syst. 9 (4) (2001) 506–515.

[61] A. González, R. Pérez, Selection of relevant features in a fuzzy genetic
learning algorithm, IEEE Trans. Syst. Man Cybern. B 31 (3) (2001) 417–425.

[62] E.C. Thomson, L.E. Rosen, J.G. Shepherd, R. Spreafico, A. da Silva Filipe,
J.A. Wojcechowskyj, C. Davis, L. Piccoli, D.J. Pascall, J. Dillen, et al.,
Circulating sars-cov-2 spike n439k variants maintain fitness while evading
antibody-mediated immunity, Cell 184 (5) (2021) 1171–1187.

http://refhub.elsevier.com/S1568-4946(21)01090-5/sb14
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb14
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb14
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb15
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb15
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb15
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb15
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb15
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb15
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb15
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb16
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb16
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb16
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb16
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb16
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb16
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb16
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb17
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb17
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb17
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb17
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb17
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb17
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb17
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb18
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb18
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb18
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb18
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb18
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb19
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb19
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb19
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb19
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb19
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb19
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb19
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb20
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb20
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb20
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb20
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb20
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb21
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb21
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb21
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb21
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb21
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb22
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb22
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb22
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb23
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb23
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb23
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb23
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb23
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb23
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb23
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb23
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb23
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb23
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb23
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb24
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb24
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb24
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb25
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb25
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb25
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb26
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb26
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb26
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb26
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb26
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb26
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb26
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb27
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb27
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb27
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb28
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb28
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb28
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb28
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb28
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb29
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb29
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb29
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb29
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb29
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb30
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb30
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb30
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb30
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb30
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb31
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb31
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb31
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb31
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb31
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb32
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb32
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb32
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb32
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb32
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb33
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb33
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb33
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb33
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb33
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb33
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb33
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb34
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb34
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb34
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb35
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb35
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb35
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb35
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb35
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb35
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb35
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb36
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb36
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb36
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb36
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb36
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb37
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb37
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb37
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb37
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb37
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb37
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb37
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb38
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb38
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb38
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb38
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb38
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb39
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb39
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb39
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb39
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb39
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb40
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb40
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb40
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb40
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb40
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb41
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb41
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb41
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb41
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb41
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb42
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb42
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb42
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb42
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb42
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb43
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb43
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb43
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb43
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb43
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb44
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb44
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb44
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb44
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb44
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb45
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb45
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb45
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb45
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb45
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb46
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb46
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb46
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb46
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb46
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb47
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb47
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb47
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb47
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb47
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb47
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb47
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb47
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb47
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb48
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb48
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb48
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb48
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb48
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb49
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb49
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb49
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb49
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb49
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb49
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb49
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb50
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb50
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb50
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb50
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb50
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb50
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb50
http://arxiv.org/abs/2103.11214
https://www.kaggle.com/futurecorporation/epitope-prediction
https://www.kaggle.com/futurecorporation/epitope-prediction
https://www.kaggle.com/futurecorporation/epitope-prediction
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb53
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb53
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb53
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb53
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb53
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb54
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb54
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb54
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb54
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb54
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb55
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb55
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb55
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb56
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb56
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb56
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb56
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb56
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb57
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb57
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb57
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb57
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb57
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb58
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb58
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb58
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb59
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb59
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb59
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb60
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb60
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb60
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb61
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb61
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb61
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb62
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb62
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb62
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb62
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb62
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb62
http://refhub.elsevier.com/S1568-4946(21)01090-5/sb62

	A novel ensemble fuzzy classification model in SARS-CoV-2 B-cell epitope identification for development of protein-based vaccine
	Introduction
	Related works
	Material and methods
	Dataset description
	Fuzzy learning classification models
	Proposed ensemble fuzzy classification approach
	Evaluation metrics

	Experimental results
	Dataset preprocessing
	SARS-CoV prediction
	SARS-CoV-2 prediction

	Discussion
	Conclusion
	Code Availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


