Eroğlu, Nuray2024-10-292024-10-2920242147-6268https://doi.org/10.36753/mathenot.1461857https://search.trdizin.gov.tr/tr/yayin/detay/1266302https://hdl.handle.net/20.500.11776/13507In this work, we characterize some rings in terms of dual self-CS-Baer modules (briefly, ds-CS-Baer modules). We prove that any ring $R$ is a left and right artinian serial ring with $J^2(R)=0$ iff $R\\oplus M$ is ds-CS-Baer for every right $R$-module $M$. If $R$ is a commutative ring, then we prove that $R$ is an artinian serial ring iff $R$ is perfect and every $R$-module is a direct sum of ds-CS-Baer $R$-modules. Also, we show that $R$ is a right perfect ring iff all countably generated free right $R$-modules are ds-CS-Baer.en10.36753/mathenot.1461857info:eu-repo/semantics/openAccessDual self-CS-Baer moduleHarada ringLifting modulePerfect ringQF-ringSerial ringRings Whose Certain Modules are Dual Self-CS-BaerArticle1231131182-s2.0-852101749451266302