Ayazoğlu (Mashiyev), RabilEkincioğlu, İsmailAlisoy, Gülizar2022-05-112022-05-1120171417-3875https://doi.org/10.14232/ejqtde.2017.1.75https://hdl.handle.net/20.500.11776/7414In this paper, we deal with the following p(x) - Schrodinger problem: { (-div (vertical bar del u vertical bar(p(x)-2)del u) + V(x) vertical bar u vertical bar(p(x)-2) u = f (x, u) in R-N; u is an element of W-1,W-p(x) (R-N), where the nonlinearity is sublinear. We present the existence of infinitely many solutions for the problem. The main tool used here is a variational method and Krasnoselskii's genus theory combined with the theory of variable exponent Sobolev spaces. We also establish a Bartsch-Wang type compact embedding theorem for the variable exponent spaces.en10.14232/ejqtde.2017.1.75info:eu-repo/semantics/openAccessp(x)-Laplace operatorSchrodinger equationvariable exponent Lebesgue-Sobolev spacesKrasnoselskii's genusP(X)-Laplacian EquationsExistenceSpacesMultiple small solutions for p(x)-Schrodinger equations with local sublinear nonlinearities via genus theoryArticle75116Q2WOS:0004156542000012-s2.0-85034248466Q3