Aydin, Muhittin EvrenKara, Ayla Erdur2024-10-292024-10-2920240393-04401879-1662https://doi.org/10.1016/j.geomphys.2023.105055https://hdl.handle.net/20.500.11776/14305In this paper we study surfaces with minimal potential energy under gravitational forces, called singular minimal surfaces. We prove that a ruled singular minimal surface in a Euclidean 3-space is cylindrical, in particular as an alpha-catenary cylinder by a result of Lopez [Ann. Glob. Anal. Geom. 53 (4) (2018) 521-541]. This result is also extended in Lorentz-Minkowski 3-space.(c) 2023 Elsevier B.V. All rights reserved.en10.1016/j.geomphys.2023.105055info:eu-repo/semantics/closedAccessalpha-CatenarySingular minimal surfaceRuled surfaceLorentz-Minkowski spaceRuled singular minimal surfacesArticle195Q1WOS:0011247681000012-s2.0-85177811997Q2